Research on orbit fitting and forecasting accuracy of different orbit types’ LEO satellites
-
摘要: 低轨道地球卫星(LEO)的精度直接影响到LEO卫星的应用领域,因此研究合适的模型提高LEO卫星轨道插值/预报精度是一项很有意义且必要的工作. 本文详细研究了滑动切比雪夫多项式、克里金算法在不同类型LEO轨道的拟合、预报精度. 结果表明:采用合适的拟合策略,两种算法均能获得毫米级的插值精度;相较于滑动切比雪夫多项式,克里金算法拟合轨道的空间误差分布更为集中,未随着历元变化出现大幅波动. 克里金算法预报轨道的精度低于滑动切比雪夫多项式;采用克里金算法预报60 s,各颗LEO卫星轨道预报的精度在1~2.5 m;采用滑动切比雪夫多项式预报120 s,各颗LEO卫星可获得优于5 m的轨道精度.
-
关键词:
- 低轨道地球卫星(LEO) /
- 滑动切比雪夫多项式 /
- 克里金 /
- 轨道拟合 /
- 轨道预报
Abstract: The accuracy of low earth orbit (LEO) satellite orbits directly affects the application areas of LEO satellites, so it’s very meaningful and necessary work so as to study appropriate models to improve the fitting/forecasting accuracy of LEO satellite orbit. The fitting/forecasting accuracy of sliding Chebyshev polynomial and Kriging algorithm in different types of LEO orbits were studied in this paper, the results show that: both algorithms can obtain millimeter-level interpolation accuracy with a suitable fitting strategy. Compared to the sliding Chebyshev fitting algorithm, the spatial error distribution of the kriging algorithm fitting orbit is more concentrated, and it does not fluctuate sharply with the change of epoch. The prediction accuracy of the Kriging algorithm is lower than the sliding Chebyshev polynomial. When the Kriging algorithm is used to forecast 60 seconds, the forecasting accuracy can reach 1 to 2.5 m. While the sliding Chebyshev polynomial’s forecasting accuracy of 120 seconds is better than 5 m in each LEO satellite.-
Key words:
- low orbit satellite /
- sliding Chebyshev polynomial /
- Kriging /
- orbit fitting /
- orbit forecasting
-
表 1 实验选用LEO卫星轨道信息
卫星 轨道类型 轨道高度/km 运行1圈时长/h GRACE-B 近极圆轨道 500 1.56 Sentinel-1B 极地太阳同步轨道 693 1.60 HY-2A 太阳同步轨道 971 1.75 Jason-3 非太阳同步轨道 1336 2.00 表 2 各颗LEO卫星轨道的拟合点位空间误差RMS
cm 策略 GRACE-B Sentinel-1B HY-2A Jason-3 [6, 6] 4.2 2.9 2.1 1.1 [6, 8] 19.9 14.1 10.5 5.6 [6, 10] 68.4 48.7 36.7 19.4 [6, 12] 188.4 134.6 101.5 53.7 表 3 采用6、8个历元进行克里金拟合轨道的空间误差RMS
m 历元数目 GRACE-B Sentinel-1B HY-2A Jason-3 6 47.8 38.9 31.3 20.1 8 43.3 32.7 27.9 17.3 表 4 采用[8,10]策略切比雪夫多项式外推轨道的空间误差
外推历元/s GRACE-B/ m Sentinel-1B/ m HY-2A/ m Jason-3/ m 1( 60 s) 0.082 0.033 0.006 0.002 2(120 s) 4.816 1.257 0.041 0.012 4(240 s) 35.630 13.840 4.483 1.403 6(360 s) 93.060 75.490 18.710 7.940 表 5 采用20个历元进行克里金预报时外推轨道的空间误差
外推历元/s GRACE-B/m Sentinel-1B/m HY-2A/m Jason-3/m 1(60 s) 2.23 1.69 1.46 1.14 2(120 s) 14.75 11.02 9.74 7.52 4(240 s) 191.53 139.11 124.31 96.57 -
[1] 王磊, 李德仁, 陈锐志, 等. 低轨卫星导航增强技术—机遇与挑战[J]. 中国工程科学, 2020, 22(2): 144-152. [2] 田润, 崔志颖, 张爽娜, 等. 基于低轨通信星座的导航增强技术发展概述[J]. 导航定位与授时, 2021, 8(1): 66-81. [3] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1501-1505. [4] 张如伟, 刘根友. 低轨卫星轨道拟合及预报方法研究[J]. 大地测量与地球动力学, 2008, 28(4): 115-120. [5] 王友存, 崔腾飞, 张涛. 基于切比雪夫多项式的LEO卫星轨道拟合与预报精度分析[J]. 煤炭技术, 2019, 38(6): 74-77. [6] 施斌, 罗佳. 基于插值理论的GRACE卫星精密轨道内插的研究[J]. 测绘信息与工程, 2011, 36(6): 4-7. [7] 向夏芸, 王密, 齐建伟, 等. ZY-3卫星轨道拟合与预报精度分析[J]. 测绘通报, 2015(1): 8-14. [8] 高鹏, 乔学军, 范城城. HY-2卫星精密轨道拟合与外推的两种方法比较[J]. 海洋测绘, 2013, 33(4): 58-61. DOI: 10.3969/j.issn.1671-3044.2013.04.016 [9] 王亚菲, 钟世明, 王海涛, 等. LEO卫星轨道预报精度分析[J]. 测绘学报, 2016, 45(9): 1035-1041. DOI: 10.11947/j.AGCS.2016.20160045 [10] 张欣欣, 王磊, 许钡榛, 等. ERP预报误差对低轨卫星精密轨道预报的影响[J]. 大地测量与地球动力学, 2020, 40(5): 482-485. [11] 洪樱, 欧吉坤. GPS卫星精密星历和钟差三种内插方法的比较[J]. 武汉大学学报(信息科学版), 2006, 31(6): 516-518,556. [12] 杨学锋, 程鹏飞, 方爱平, 等. 利用切比雪夫多项式拟合卫星轨道坐标的研究[J]. 测绘通报, 2008(12): 1-3. [13] 李振昌, 李仲勤. 滑动式切比雪夫多项式拟合法在BDS精密星历内插中的应用[J]. 测绘工程, 2019, 28(4): 49-53. [14] 王兴, 高井祥, 王坚, 等. 利用滑动式切比雪夫多项式拟合卫星精密坐标和钟差[J]. 测绘通报, 2015(5): 6-8,16. [15] 谢孟辛, 张捍卫. 切比雪夫多项式拟合GPS轨道坐标的改进算法[J]. 测绘科学, 2021, 46(6): 53-58. [16] 许美玲, 邢通, 韩敏. 基于时空Kriging方法的时空数据插值研究[J]. 自动化学报, 2020, 46(8): 1681-1688. [17] 晏新村, 徐良, 周万里, 等. 克里金算法在精密星历插值中的应用[J]. 现代导航, 2021, 12(1): 29-31,36. DOI: 10.3969/j.issn.1674-7976.2021.01.007