BeiDou space-time blockchain
-
摘要: 简要介绍了区块链技术的工作量证明共识算法. 指出了时空歧义会引起共识分歧,并导致效率降低、算力浪费. 提出了通过北斗短报文服务传输共路信令,可以构造无尺度网络,规避网络异步生态,并在区块链应用方面做了较深入地探讨. 指出了所有分布式的行为都可以应用区块链技术来解决信任问题. 论述了将区块链技术用于现实世界时应该同时保证账本可信、物理可信和时空可信. 提出了北斗卫星导航系统(BDS)的作用不仅能便捷可靠的采集时空标签,而且更深层的意义在于BDS定位、导航和授时(PNT)服务具备时空可信性,具体包括:服务泛在性、基准统一性、时空自洽性、因果必然性和共识同步性. 最后,对北斗时空区块链的具体应用进行了分类和介绍,包括流程全链监管、资源高效共享和任务众创协作.
-
关键词:
- 区块链 /
- 共识算法 /
- 北斗卫星导航系统(BDS) /
- 时空 /
- 大数据
Abstract: It is briefly introduced the proof-of-work consensus algorithm of blockchain technology. It is pointed out that the ambiguity of space-time will cause consensus divergence, and lead to reduced efficiency and waste of computing power. It is proposed to transmit common-channel signaling through BeiDou Navigation Satellite System (BDS) short message service, which can construct a scale-free network and avoid the asynchronous network ecology. It is also made a more in-depth discussion on the application of blockchain, and pointed out that all distributed behaviors can apply blockchain technology to solve the trust problem. Discussed that when blockchain technology is used in the real world, it should ensure the credibility of the ledger, the credibility of the physical and the credibility of space-time at the same time. It is proposed that the role of BeiDou is not only convenient and reliable to collect space-time tags, but also has the deeper meaning that the BeiDou positioning, navigation and timing (PNT) service has space-time credibility, including: service ubiquity, benchmark uniformity, space-time self-consistency, causal inevitability and consensus synchronization. Finally, the specific application of the BeiDou space-time blockchain is classified and introduced, including: full-chain supervision of processes, efficient resource sharing, and task crowd-creation collaboration.-
Key words:
- blockchain /
- consensus algorithm /
- BeiDou Navigation Satellite System (BDS) /
- space-time /
- big data
-
[1] 韩璇, 袁勇, 王飞跃. 区块链安全问题: 研究现状与展望[J]. 自动化学报, 2019, 45(1): 206-225. [2] 夏清, 窦文生, 郭凯文, 等. 区块链共识协议综述[J]. 软件学报, 2021, 32(2): 277-299. [3] 邵奇峰, 张召, 朱燕超, 等. 企业级区块链技术综述[J]. 软件学报, 2019, 30(9): 2571-2592. [4] ALI M, VECCHIO M, PINCHEIRA M, et al. Applications of blockchains in the internet of things: a comprehensive survey[J]. IEEE communications surveys and tutorials, 2019, 21(2): 1676-1717. DOI: 10.1109/COMST.2018.2886932 [5] 曾诗钦, 霍如, 黄韬, 等. 区块链技术研究综述: 原理、进展与应用[J]. 通信学报, 2020, 41(1): 134-151. DOI: 10.11959/j.issn.1000-436x.2020027 [6] 傅易文晋, 陈华辉, 钱江波, 等. 面向时空数据的区块链研究综述[J]. 计算机工程, 2020, 46(3): 1-10. [7] 中国信息通信研究院. 区块链白皮书(2018年)[R]. 2018. [8] 中国信息通信研究院. 区块链白皮书(2019年)[R]. 2019. [9] 中国信息通信研究院. 区块链白皮书(2020年)[R]. 2020. [10] 徐蜜雪, 苑超, 王永娟, 等. 拟态区块链——区块链安全解决方案[J]. 软件学报, 2019, 30(6): 1681-1691. [11] 王永利. 央行数字货币的意义[J]. 中国金融, 2016(8): 19-20. [12] 蒋宇娜, 葛晓虎, 杨旸, 等. 面向6G的区块链物联网数据共享和存储机制[J]. 通信学报, 2020, 41(10): 48-58. [13] 黄龙, 唐小妹, 王飞雪. 卫星导航接收机抗欺骗干扰方法研究[J]. 武汉大学学报(信息科学版), 2011, 36(11): 1344-1347. [14] 王璐, 吴仁彪, 王文益, 等. 基于多天线的GNSS压制式干扰与欺骗式干扰联合抑制方法[J]. 电子与信息学报, 2016, 38(9): 2344-2350. [15] 中国卫星导航定位协会. 2021中国卫星导航与位置服务产业发展白皮书[R]. 2021. [16] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898. DOI: 10.11947/j.AGCS.2018.20180149 [17] 孙知信, 张鑫, 相峰, 等. 区块链存储可扩展性研究进展[J]. 软件学报, 2021, 32(1): 1-20. [18] 孙传恒, 于华竟, 徐大明, 等. 农产品供应链区块链追溯技术研究进展与展望[J]. 农业机械学报, 2021, 52(1): 1-13. DOI: 10.6041/j.issn.1000-1298.2021.01.001 [19] 周玉科. 利用区块链技术促进地球科学数据共享的思考: 概念与方案[J]. 测绘与空间地理信息, 2020, 43(9): 13-16.