Observation prediction strategy of GNSS RTK reference station based on first-order model compensation
-
摘要: 针对相对定位过程中基准站通信中断的情况,本文作者提出了一种对基准站数据进行高精度预报,维持向参考站提供延迟差分修正信息的思路. 对影响全球卫星导航系统(GNSS)观测值预报的卫星星历误差、电离层、对流层等误差源进行分析,比较了各类误差源对延迟时长的敏感程度. 实验结果显示:预报误差随着预报时长增加线性累积,且与卫星高度角负相关;当高度角低于10°时,预报5 min造成的误差可达174.6 cm. 同时,为提高数据预报精度,利用一阶线性模型计算误差累积速率,并补偿至预报观测值. 补偿后,上述预报累积误差削弱至64.4 cm. 定位结果表明:当基准站数据缺失1 min时,经一阶线性模型补偿预报后,零基线实时定位(RTK)定位结果在,东(E)、北(N)、天(U)三个方向均方根误差(RMSE)分别为0.37 cm、0.41 cm、0.86 cm,较未补偿时提升71.1%、77.2%和90.0%;当预报延迟为5 min时,仍能保持cm级解算精度.Abstract: In this paper, high-precision method to predict observations from reference station of real-time kinematic (RTK) is proposed, which may be caused by the interruption of reference station communication. The satellite ephemeris, ionosphere, troposphere and other error sources that affect the prediction of the Global Narigation Satellicte System (GNSS) observations are analyzed, and the sensitivity of various error sources to the length of delay is compared. Results show that the forecast error accumulates linearly as the delay increases, and is negatively correlated with the satellite elevation. When the elevation angle is lower than 10°, the error caused by the precise ephemeris forecast for 5 minutes can reach 174.6 cm. At the same time, the linear trend can be calculated when the reference station data is not missing which can be used to compensate predicted observations. Under the same conditions, cumulative error of compensated observation is reduced to 64.4 cm. The RTK positioning results show that when delay is 1 min, the RMS of the three directions of E, N, and U are 0.37 cm, 0.41 cm, and 0.86 cm respectively, which is 71.1%, 77.2% and 90.0% better than that without compensation. By comparison with 5 minutes’ delay, the centimeter-level accuracy can still be maintained.
-
表 1 未补偿大气误差时预报300 s不同高度角卫星的预报误差
卫星高度角/(°) 使用广播星历的
预报误差/cm使用精密星历的
预报误差/cm<15 174.90 174.6 <40 29.10 26.7 <70 10.87 9.5 表 2 精密星历预报300 s补偿前后累积误差比较
卫星高度角/(°) 不考虑大气误差
预报误差/cm补偿后
预报误差/cm提升
百分比/%<15 174.6 64.4 63.1 <40 26.7 4.6 82.9 <70 9.5 1.3 83.4 表 3 观测值预报策略
预报策略 值 预报时长/s 60 轨道 IGS精密星历 电离层 一阶模型改正 对流层 - 截止高度角/(°) 20 -
[1] 沈笑云, 保宁鑫, 焦卫东. BDS RTK定位性能分析[J]. 信号处理, 2019, 35(8): 1392-1401. [2] STEPHANIE M, ROCK S. Time-relative positioning with a single civil GPS receiver[J]. GPS solutions, 2001, 5(2): 71-77. DOI: 10.1007/PL00012888 [3] WANG H T, OU J K, YUAN Y B. Strategy of data processing for GPS rover and reference receivers using different sampling rates[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(3): 1144-1149. DOI: 10.1109/TGRS.2010.2070509 [4] 谢宝飞, 刘晖, 舒宝, 等. GNSS异步RTK定位效果分析[J]. 测绘地理信息, 2020, 45(5): 24-28, 42. [5] ZHANG L, LV H F, WANG D J, et al. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output[J]. Journal of geodesy, 2015, 89(7): 641-653. DOI: 10.1007/s00190-015-0803-7 [6] LAWRENCE D G. Reference carrier phase prediction for kinematic GPS: US5903236[P/OL]. (1999-25-11)[2021-06-25]. https://www.freepatentsonline.com/5903236.pdf [7] DU Y, HUANG G W, ZHANG Q, et al. A novel predictive algorithm for double difference observations of obstructed BeiDou geostationary earth orbit (GEO) satellites[J]. Advances in space research, 2019, 63(5): 1554-1565. DOI: 10.1016/j.asr.2018.11.009 [8] DU Y, HUANG G W, ZHANG Q, et al. A new asynchronous RTK method to mitigate base station observation outages[J]. Sensors, 2019, 19(15): 3376. DOI: 10.3390/s19153376 [9] 李征航, 黄劲松. GPS测量与数据处理[M]. 第2版. 武汉: 武汉大学出版社, 2010. [10] TEUNISSEN P J G, MONTENBRUCK O. Springer handbook of global navigation satellite systems[M]. Springer, 2017. [11] WANG F H, ZHANG X H, HUANG J S. Error analysis and accuracy assessment of GPS absolute velocity determination without SA[J]. Geo-spatial information science, 2008, 11(2): 133-138. DOI: 10.1007/s11806-008-0038-3 [12] 刘朝英, 陈国, 赵齐乐, 等. BDS单点测速原理及精度分析[J]. 大地测量与地球动力学, 2014, 34(6): 114-118. [13] 阚昊宇, 胡志刚, 吕逸飞, 等. 利用不同时间同步体制钟差评估北斗三号星载原子钟性能[J/OL].[2021-08-18]. 武汉大学学报(信息科学版), 2021:1-15. DOI: 10.13203/j.whugis20210286