Adaptive detection method pedestrian step frequency in multi scenes
-
摘要: 针对步频检测中容易出现步数过计、错计等问题影响行人航迹推算(PDR)室内定位精度,提出一种自适应步频检测算法. 由于智能手机内置加速度传感器直接采集得到的数据存在大量干扰噪声,提出一种组合滤波去噪方法,即将加速度数据依次通过赫尔指数移动平均法、卡尔曼滤波(KF)和低通滤波的预处理滤波组合去除噪声. 然后在不同场景下,如上下楼、水平地面和不限制步速,经过峰谷值去异、自适应动态阈值、峰谷值成对的检测算法后获取峰谷值个数,实现在多场景和多步态下的准确计步. 实验结果表明:相比峰值检测和动态阈值算法,该方法能有效剔除伪真步数且适应于上下楼场景,综合场景下的实验平均精度达到99.44%.
-
关键词:
- 步频检测 /
- 行人航迹推算(PDR) /
- 加速度传感器 /
- 动态阈值 /
- 峰值检测
Abstract: Aiming at the problems of over counting and wrong counting in step frequency detection, which affect the indoor positioning accuracy of pedestrian dead reckoning (PDR), an adaptive step frequency detection algorithm is proposed. Because there is a large amount of interference noise in the data directly collected by the built-in acceleration sensor of smart phone, a combined filtering denoising method is proposed.The acceleration data is denoised by preprocessing filter combination of exponential hull moving average, Kalman filter (KF) and low-pass filter. Then, in different scenes, such as upstairs and downstairs, horizontal ground and unlimited walking speed, the number of peak-valley values is obtained after the peak-valley value de differentiation, adaptive dynamic threshold and peak-valley value pairing detection algorithm, so as to achieve accurate step counting in multi scenes and multi gait. The experimental results show that, compared with the peak detection method and dynamic threshold algorithm, the proposed method can effectively eliminate the false steps and adapt to the upstairs and downstairs scenes, and the average accuracy of the experiment in the comprehensive scene reaches 99.44%. -
表 1 5名行人的步频检测结果
行人编号 步行状态 实际行走步数 峰值检测 动态阈值 本文方法 检测步数 检测误差/% 检测步数 检测误差 检测步数 检测误差/% A 上楼走(5层) 100 107 7 106 6 100 0 下楼走(5层) 100 116 16 105 5 100 0 慢速走 100 141 41 131 31 100 0 常速走 100 114 14 106 6 99 1 快速走 100 109 9 107 7 99 1 B 上楼走(5层) 100 107 7 103 3 101 1 下楼走(5层) 100 105 5 104 4 100 0 慢速走 100 173 73 118 18 100 0 常速走 100 104 4 101 1 100 0 快速走 100 102 2 102 2 101 1 C 上楼走(5层) 100 106 6 101 1 100 0 下楼走(5层) 100 107 7 100 0 99 1 慢速走 100 177 77 131 31 100 0 常速走 100 106 6 102 1 100 0 快速走 100 100 0 100 1 99 1 上楼走(5层) 100 106 6 102 2 100 0 D 下楼走(5层) 100 110 10 103 3 98 2 慢速走 100 194 94 134 34 100 0 常速走 100 109 9 103 3 101 1 快速走 100 101 1 101 1 100 0 上楼走(5层) 100 106 6 100 0 98 2 下楼走(5层) 100 108 8 102 2 100 0 E 慢速走 100 169 69 148 48 98 2 常速走 100 106 6 104 4 99 1 快速走 100 105 5 103 3 100 0 -
[1] JIN Y Y, TOH H S, SOH W S, et al. A robust dead-reckoning pedestrian tracking system with low cost sensors[C]// IEEE International Conference on Pervasive Computing and Communications, 2011. DOI: 10.1109/PERCOM.2011.5767590 [2] WU Y, ZHU H B, DU Q X, et al. A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[J]. International journal of automation and computing, 2018, 16(1): 1-83. DOI: 10.1007/s11633-018-1150-y [3] PEEBLES P Z J. Probability, random variable and random signal principles[M]. New York: McGraw Hill, 1993. [4] KANG W H, HAN Y N. SmartPDR: smartphone-based pedestrian dead reckoning for indoor localization[J]. IEEE sensors journal, 2015, 15(5): 2906-2916. DOI: 10.1109/JSEN.2014.2382568 [5] JANG H J, KIM J W, HWANG D H. Robust step detection method for pedestrian navigation systems[J]. Electronics letters, 2007, 43(14): 749-751. DOI: 10.1049/el:20070478 [6] TUMKUR K, SUBBIAH S. Modeling human walking for step detection and stride determination by 3-Axis accelerometer readings in pedometer[C]//The 4th International Conference on Computational Intelligence. Modelling and Simulation, 2012. DOI: 10.1109/CIMSim.2012.65 [7] TANG Z H, GUO Y, CHEN X Q. Self-adaptive step counting on smartphones under unrestricted stepping modes[C]// IEEE 40th Annual Computer Software and Applications Conference(COMPASC), 2016. DOI: 10.1109/COMPSAC.2016.187 [8] CHIEN J C, HIRAKAWA K, SHIEH J S, et al. An effective algorithm for dynamic pedometer calculation[C]// International Conference on Intelligent Informatics and Biomedical Sciences(ICIIBMS), 2015. DOI: 10.1109/ICIIBMS.2015.7439458 [9] 魏芬, 邓海琴. 基于加速度传感器的运动步数检测算法研究[J]. 电子器件, 2016, 39(5): 1175-1179. DOI: 10.3969/j.issn.1005-9490.2016.05.031 [10] 王岚, 彭敏, 周清峰. 基于自适应双阈值的计步算法[J]. 计算机应用研究, 2020, 37(5): 1741-1744,1773. [11] NGOC-HUYNH H, TRUONG P H, JEONG G-M. Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone[J]. Sensors, 2016, 16(9): 1423. DOI: 10.3390/s16091423 [12] ZHANG H M, YUAN W Z, SHEN Q, et al. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition[J]. IEEE sensors journal, 2014, 15(3): 1421-1429. DOI: 10.1109/JSEN.2014.2363157 [13] SUSI M, RENAUDIN V, LACHAPELLE G. Motion mode recognition and step detection algorithms for mobile phone users[J]. Sensors, 2013, 13(2): 1539-1562. DOI: 10.3390/s130201539 [14] 梁久祯, 朱向军, 陈璟. 基于手机加速度传感器的高精低采样计步算法设计[J]. 西北大学学报(自然科学版), 2015, 5(45): 738-744. [15] ZHANG R, BANNOURA A, HÖFLINGER F, et al. Indoor localization using a smart phone[C]//IEEE Sensors Applications Symposium Proceedings, 2013. DOI: 10.1109/SAS.2013.6493553 [16] 李若涵, 张金艺, 徐德政, 等. 运动分类步频调节的微机电惯性测量单元室内行人航迹推算[J]. 上海大学学报(自然科学版), 2014, 20(5): 612-623. [17] THANH P V, NGUYEN D A, DINH D N, et al. Highly accurate step counting at various walking states using low-cost inertial measurement unit support indoor positioning system[J]. Sensors, 2018, 18(10): 22. DOI: 10.3390/s18103186 [18] RAUDYS A , LENČIAUSKAS V, MALČIUS E. Moving averages for financial data smoothing[C]//International Conference on Information and Software Technologies, 2013(403): 34-45. DOI: 10.1007/978-3-642-41947-8_4 [19] 胡增科, 朱锋, 刘万科. 利用Butterworth滤波器平滑加速度计的双天线GNSS/MEMS组合测姿[J]. 大地测量与地球动力学, 2020, 40(1): 51-55. [20] 贺锋涛, 赵胜利, 周广平, 等. 基于模糊逻辑的室内导航步长估计方法研究[J]. 电子技术应用, 2016, 42(11): 59-61,65. [21] 王文杰, 李军. 基于手机加速度传感器的计量算法设计[J]. 工业控制计算机, 2016, 29(1): 75-76,79. DOI: 10.3969/j.issn.1001-182X.2016.01.033