Generalized ridge estimation method for morbid weighted total least squares
-
摘要: 针对加权情形下的变量误差(EIV)模型,采用广义岭估计法处理总体最小二乘平差的病态性问题. 结合最优化准则和协方差传播率推导了未知参数的改正数求解公式;根据参数估计值的均方误差最小化原理,通过求偏导数列出广义岭估计中岭参数的迭代解式,并讨论了广义岭参数的含义和作用,给出了确定岭参数的L-曲线法. 通过算例比较分析了加权最小二乘估计、总体最小二乘估计、加权最小二乘岭估计、总体最小二乘岭估计、加权最小二乘的广义岭估计和总体最小二乘广义岭估计,叙述了加权总体最小二乘的广义岭估计的优缺点.
-
关键词:
- 变量误差(EIV)模型 /
- 均方误差 /
- 总体最小二乘 /
- 广义岭估计 /
- 岭参数
Abstract: For the variable error (EIV) model in the weighted case, the generalized ridge estimation method is used to deal with the morbid problem of the total least squares adjustment. Combined with optimization criterion and covariance propagation rate, the correction formula of unknown parameters is derived. Accordsing to the principle of minimizing mean square error of parameter estimation, the iterative solution of ridge parameter in generalized ridge estimation is given by solving partial derivative, and the meaning and function of generalized ridge parameter are discussed. The weighted least squares estimation, total least squares estimation, the weighted least squares ridge estimation, total least squares ridge estimation, generalized ridge estimation of the weighted least squares and generalized ridge estimation of total least squares are compared and analyzed by examples. The advantages and disadvantages of generalized ridge estimation of weighted total least squares are described. -
表 1 不同方法的解算结果
方案 $ {\hat{x}}_{1} $ $ {\hat{x}}_{2} $ $ {\hat{x}}_{3} $ $ {\hat{x}}_{4} $ $ {\hat{x}}_{5} $ 岭参数 $\parallel \Delta \hat{\boldsymbol{X} }\parallel$ 一 1.391 9 0.121 5 0.778 7 0.267 2 1.441 7 - 1.306 3 二 3.304 1 −2.803 3 0.060 0 3.587 4 2.902 7 - 6.732 2 三 1.215 7 0.372 8 0.828 0 0.598 3 1.315 7 0.299 1 0.854 7 四 1.083 6 0.625 6 0.736 4 0.789 2 1.212 3 0.150 0 0.553 4 五 0.976 5 0.800 0 0.424 2 0.962 2 1.129 6 K 0.624 8 六 0.977 4 0.800 0 0.640 1 0.891 4 1.136 0 K 0.447 6 真值 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 - - 表 2 方案六的协因数矩阵
参数 $ {\hat{\mathit{X}}}_{1} $ $ {\hat{\mathit{X}}}_{2} $ $ {\hat{\mathit{X}}}_{3} $ $ {\hat{\mathit{X}}}_{4} $ $ {\hat{\mathit{X}}}_{5} $ $ {\hat{\mathit{X}}}_{1} $ 2.905 8$ \times {10}^{-2} $ −4.875 2$ \times {10}^{-8} $ 2.009 7$ \times {10}^{-2} $ 1.869 0$ \times {10}^{-2} $ −7.903 2$ \times {10}^{-3} $ $ {\hat{\mathit{X}}}_{2} $ 4.718 9$ \times {10}^{-11} $ −1.395 9$ \times {10}^{-6} $ 2.260 4$ \times {10}^{-7} $ 5.107 6$ \times {10}^{-7} $ $ {\hat{\mathit{X}}}_{3} $ 1.042 2$ \times {10}^{-1} $ 6.167 1$ \times {10}^{-2} $ −2.732 8$ \times {10}^{-2} $ $ {\hat{\mathit{X}}}_{4} $ 1.391 6$ \times {10}^{-2} $ −4.221 1$ \times {10}^{-3} $ $ {\hat{\mathit{X}}}_{5} $ 3.019 1$ \times {10}^{-3} $ -
[1] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社, 2003. [2] 曾文宪, 刘泽邦, 方兴, 等. 通用EIV平差模型的线性化估计算法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1284-1290. [3] LENTH R V, HUFFEL S V, VANDEWALLE J, et al. The total least squares problem: computational aspects and analysis[J]. Journal of the american statistical association, 1999, 94(447): 983. DOI: 10.2307/2670017 [4] ADCOCK R J. Note on the method of least squares[J]. The analyst, 1877, 4(6): 183-184. DOI: 10.2307/2635777 [5] FIERRO R D, GOLUB G H, HANSEN P C, et al. Rcgularization by truncated total least squares[J]. SLAM journal on scientific and statistical computing, 1997, 18(4): 1223-1241. DOI: 10.1137/S1064827594263837 [6] HOERL A E, KENNARD R W. Ridge regression: biased estimation for non-orthogonal problems[J]. Technometrics, 1970, 12(1): 55-67. DOI: 10.2307/1267351 [7] HOERL A E, KENNARD R W. Ridge regression: applications to nonorthogonal problems[J]. Technometrics, 1970, 12(1): 69-86. DOI: 10.2307/1267352 [8] GOLUB G H, HANSEN P C, O’LEARY D P. Tikhonov regularization and total least squares[J]. SIAM journal on matrix analysis and applications, 1999, 21(1): 185-194. DOI: 10.1137/S0895479897326432 [9] 钱峰, 张一枝. 广义c-K估计优良性及其应用[J]. 统计与决策, 2018, 34(21): 86-89. [10] 黄海兰, 牛犇. 岭参数确定的研究[J]. 测绘科学, 2011, 36(4): 31-32. [11] 王振杰, 欧吉坤. 用L-曲线法确定岭估计中的岭参数[J]. 武汉大学学报(信息科学版), 2004, 29(3): 235-238. [12] 鲁洋为, 王振杰. 用U曲线法确定岭估计中的岭参数[J]. 导航定位学报, 2015, 3(3): 132-134,138. [13] 黄维彬. 近代平差理论及其应用[M]. 北京: 解放军出版社, 1992. [14] 王乐洋, 许才军, 鲁铁定. 病态加权总体最小二乘平差的岭估计解法[J]. 武汉大学学报(信息科学版), 2010, 35(11): 1346-1350. [15] TIKHONOV A N. Solution of incorrectly formulated problems and the regularization method[J]. Soviet mathematics doklady, 1963(4): 1305-1308. [16] HANSEN P C. Analysis of discrete ILL-posed problems by means of the L-curve[J]. SIAM review, 1992, 34(4): 561-580. DOI: 10.1137/1034115 [17] 王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6): 575-581. [18] 鲁铁定. 总体最小二乘平差理论及其在测绘数据处理中的应用[D]. 武汉: 武汉大学, 2010.