Analysis of strain field considering the influence of colored noise in Qinghai area
-
摘要: 基于青海地区14个中国大陆构造环境监测网络(CMONOC)连续站10年的坐标时间序列数据,利用贝叶斯信息准则(BIC)确定各连续站的最优噪声模型,进而得出修正后的水平速度场,并在此基础上建立整体旋转与线性应变模型来分析青海地区的应变特征. 结果表明:青海地区CMONOC连续站坐标时间序列各方向的噪声特性存在较大差异,东(E)、北(N)、天顶(U)方向的最优噪声模型分别为 白噪声+幂律噪声(WN+PL)、白噪声+高斯-马尔科夫噪声(WN+GGM)和白噪声+闪烁噪声(WN+FN). 考虑有色噪声(CN)影响青海地区CMONOC连续站基于ITRF2014框架下的平均水平运动速率为39.45 mm/a,运动方向为88°57′58″NEE. 青海地区构造活动相对强烈的东北与西南部分别表现为挤压应变特征和拉张应变特征;从东北向西南,挤压应变逐渐减小,拉张应变逐渐增大,总体表现为挤压应变.
-
关键词:
- 全球卫星导航系统(GNSS) /
- 有色噪声(CN) /
- 时间序列 /
- 贝叶斯信息准则(BIC) /
- 速度场 /
- 应变场
Abstract: Based on the 10-years coordinate time series data of crustal movement observation network of 14 china (CMONOC) continuous stations in Qinghai, the optimal noise model of each continuous station was determined by using Bayesian information criterion (BIC), and then the modified horizontal velocity field was obtained. On this basis, the global rotation and linear strain model was established to analyze the strain characteristics in Qinghai. The results show that the noise characteristics of CMONOC continuous station in Qinghai are different in different directions. The optimal noise models in east (E), north (N) and up (U) directions are “white noise + power law noise (WN+PL)”, “white noise + Gaussian Markov noise (WN+GGM)” and “white noise + flicker noise (WN+FN)” respectively. After considering the influence of colored noise (CN), the average horizontal motion velocity of CMONOC continuous station in Qinghai based on the framework of ITRF2014 is 39.61 mm/a and the motion direction is 88°57'58"NEE. The northeastern and southwestern parts of the Qinghai region with relatively strong tectonic activities are characterized by compressive strain and tensile strain, respectively. From northeast to southwest, the compression strain gradually decreases and the tensile strain gradually increases, which is generally manifested as the compression strain. -
表 1 E、N、U方向噪声模型百分比
% 方向 WN+GGM WN+PL WN+FN WN+RW+FN E 21.43 42.86 28.57 7.14 N 35.72 28.57 28.57 7.14 U 21.43 21.43 50.00 7.14 -
[1] 瞿伟, 高源, 陈海禄, 等. 利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J]. 地球科学与环境学报, 2021, 43(1): 182-204. [2] 黄立人, 符养. GPS连续观测站的噪声分析[J]. 地震学报, 2007, 29(2): 197-202. DOI: 10.3321/j.issn:0253-3782.2007.02.009 [3] MAO A, HARRISON C G A, DIXON T H. Noise in GPS coordinate time series[J]. Journal of geophysical research atmospheres, 1999, 104(B2): 2797-2816. DOI: 10.1029/1998JB900033 [4] WILLIAMS S D P, BOCK Y, FANG P, et al. Error analysis of continuous GPS position time series[J]. Journal of geophysical research solid earth, 2004, 109(B3): B03412. DOI: 10.1029/2003JB002741 [5] ZHANG J, BOCK Y, JOHNSON H, et al. Southern california permanent GPS geodetic array: error analysis of daily position estimates and site velocities[J]. Journal of geophysical research solid earth, 1997, 102(B8): 18035-18055. DOI: 10.1029/97JB01380 [6] 蒋志浩, 张鹏, 秘金钟, 等. 顾及有色噪声影响的CGCS2000下我国CORS站速度估计[J]. 测绘学报, 2010, 39(4): 355-363. [7] 管雅慧, 王坦, 胡顺强, 等. 云南地区GPS基准站噪声模型分析[J]. 全球定位系统, 2020, 45(2): 68-73,79. [8] 王伟, 王迪晋, 陈正松, 等. 用GPS资料分析青藏高原现今应变率场[J]. 大地测量与地球动力学, 2017, 37(9): 881-883,897. [9] BOS M S, FERNANDES R M S, WILLIAMS S D P, et al. Fast error analysis of continuous GNSS observations with missing data[J]. Journal of geodesy, 2013, 87(4): 351-360. DOI: 10.1007/s00190-012-0605-0 [10] 何月帆. 高精度GPS数据处理及时间序列分析[D]. 西安: 长安大学, 2019. [11] 中国地震局GNSS数据产品服务平台 [DB/OL]. (2017-09-06)[2021-05-01]. http://www.eqhb.gov.cn/info/1435/12636.htm [12] 吴啸龙, 向洋, 汤伏全. 基于GPS应变与震源机制解应力反演喜马拉雅构造带现今地壳形变特征[J]. 地球物理学报, 2020, 63(8): 2924-2939. DOI: 10.6038/cjg2020N0362 [13] 瞿伟, 张勤, 张冬菊, 等. 基于GPS速度场采用RELSM模型分析青藏块体东北缘的形变—应变特征[J]. 地球物理学进展, 2009, 24(1): 67-74. [14] 雷前坤. 环渤海区域地壳水平运动形变模型构建及特征分析[D]. 贵阳: 贵州大学, 2020. [15] 张俊, 李屹旭, 张显云. 利用半参数模型精化REHSM和RELSM两种弹性地壳运动模型[J]. 大地测量与地球动力学, 2018, 38(4): 362-365. [16] 李延兴, 张静华, 何建坤, 等. 菲律宾海板块的整体旋转线性应变模型与板内形变-应变场[J]. 地球物理学报, 2006, 49(5): 1339-1346. DOI: 10.3321/j.issn:0001-5733.2006.05.013