Iversion of normalized difference vegetation index based on GPS-IR
-
摘要: 针对利用GPS接收机在接收L 波段信号时对周围植被水分含量较为敏感的特性,使用GPS反射信号的变化,进行测站归一化植被指数(NDVI)反演. 利用2个GPS参考站近5年的连续观测数据计算的归一化微波反射指数(NMRI),构建了反演NDVI的一元线性模型. NMRI整体变化趋势与同时间段内中分辨率成像光谱仪(MODIS) NDVI趋势表现一致,其反演结果相关系数R分别为0.626 53、0.625 73,均方根误差(RMSE)分别为0.051 29和0.055 08,进而使用BP神经网络模型反演相关系数分别提高了2%、6%. 表明GPS干涉反射测量(GPS-IR)反演区域NDVI结果具有较高可靠性. 该研究为获取精确位置、实时连续、高分辨率的 NDVI 提供了一定的理论支撑.
-
关键词:
- GPS干涉反射测量(GPS-IR) /
- 归一化植被指数(NDVI) /
- 归一化微波反射指数(NMRI) /
- 指数反演
Abstract: In view of the fact that GPS receiver is sensitive to the water content of surrounding vegetation when receiving L-band signal, the normalized difference vegetation index (NDVI) of the station is retrieved by using the change of GPS reflected signal. In this paper, the normalized microwave reflection index (NMRI) calculated from the continuous observation data of two GPS reference stations in recent five years is used to construct a univariate linear model for NDVI inversion. The correlation coefficients R of the inversion results are 0.626 53 and 0.625 73 respectively, and the root mean square error root mean square error (RMSE) are 0.051 29 and 0.055 08 respectively. The correlation coefficients of the inversion results are increased by 2% and 6% respectively by using BP neural network model, which indicates that the regional NDVI inversion results of GPS-interferometric reflectometry (GPS-IR) have high reliability. This study provides a theoretical support for obtaining accurate position, real-time continuous and high-resolution NDVI. -
表 1 GPS 参考站概况
(°) 测站名 概略位置 纬度 经度 P041 Boulder, CO 39.949492 254.805734 P049 Great Falls, MT 47.349964 249.093768 表 2 回归分析结果
测站 回归模型 相关系数 RMSE P041 y=0.19675+1.79965x 0.744 28 0.051 29 P049 y=0.17992+2.2808x 0.734 96 0.055 08 -
[1] HIRD J N, MCDERMID G J. Noise reduction of NDVI time series: an empirical comparison of selected techniques[J]. Remote sensing of environment, 2009, 113(1): 249-258. DOI: 10.1016/j.rse.2008.09.003 [2] 杨达, 易桂花, 张廷斌, 等. 青藏高原植被生长季NDVI时空变化与影响因素[J]. 应用生态学报, 2021, 32(4): 1361-1372. [3] 崔光茫. 光学遥感图像质量提升及评价技术研究[D]. 杭州: 浙江大学, 2016. [4] 郑南山, 丰秋林, 刘晨, 等. GPS 反射信号信噪比与 NDVI 相关性研究[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1423-1429. [5] LARSON K M, NIEVINSKI F G. GPS snow sensing: results from the earthscope plate boundary observatory[J]. GPS solutions, 2013, 17(3): 41-52. DOI: 10.1007/s10291-012-0259-7 [6] CHEW C C, SMALL E E, LARSON K M, et al. Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for volumetric soil moisture[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(1): 537-543. DOI: 10.1109/TGRS.2013.2242332 [7] SMALL E E, LARSON K M, BRAUN J J. Sensing vegetation growth with reflected GPS signals[J]. Geophysical research letters, 2010, 37(12): 1-5. DOI: 10.1029/2010GL042951 [8] LARSON K M, SMALL E E. Normalized microwave reflection index, part 1: a vegetation measurement derived from GPS networks[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1501-1511. DOI: 10.1109/JSTARS.2014.2300116 [9] WAN W, LARSON K M, SMALL E E, et al. Using geodetic GPS receivers to measure vegetation water content[J]. GPS solution, 2015, 19(2): 237-248. DOI: 10.1007/s10291-014-0383-7 [10] 曹庆源. 菲涅尔积分计算公式及其应用[J]. 武汉大学学报(信息科学版), 1986, 11(2): 57-64. [11] LARSON K M. GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western united states[J]. Wiley interdisciplinary reviews:water, 2016, 3(6): 775-787. DOI: 10.1002/wat2.1167 [12] CHEW C, SMALL E E, LARSON K M. An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil[J]. GPS solution, 2016, 20(3): 525-537. DOI: 10.1007/s10291-015-0462-4 [13] JONES M O, KIMBALL J S, SMALL E E, et al. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing[J]. International journal of biometeorology, 2014, 58(6): 1305-1315. DOI: 10.1007/s00484-013-0726-z [14] ESTEY L H, MEERTENS C M. TEQC: the multi-purpose toolkit for GPS/GLONASS data[J]. GPS solutions, 1999, 3(1): 42-49. DOI: 10.1007/PL00012778 [15] BILICH A, LARSON K M. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR)[J]. Radio science, 2007, 42(6): RS6003. DOI: 10.1029/2007RS003652 [16] BECERRA G E V, BENNETT R, SPINLER J C. Assessment of pseudorange multipath at continuous GPS stations in Mexico[J]. Positioning, 2013, 4(3): 253-265. DOI: 10.4236/pos.2013.43025