Analysis of spatio-temporal change of land use around Erhai Lake from 1991 to 2020 based on GEE platform
-
摘要: 洱海作为我国重点保护湖泊“新三湖”之一,近30年间环洱海地带经济发展与人地矛盾的问题日益突出. 研究环洱海地区长时间序列的土地利用变化规律,分析人类活动的影响程度对保护治理洱海具有重要意义. 基于谷歌地球引擎(GEE)云平台,以1991—2020年7期Landsat TM/OLI影像为基础数据,融合光谱、归一化差异指数和增强型植被指数等特征,采用随机森林方法对环洱海10 km范围进行了土地利用分类,结合土地利用变化图谱、人类活动指数模型定量分析了城镇化背景下环洱海地带土地利用类型的演变趋势及人类活动强度. 结果表明:1991—2020年林地、草地面积整体呈减少趋势,主要转出方向为耕地;建设用地面积持续增长,主要转入来源为耕地;水域面积变化较小,湿地呈先增加后减少趋势,上述变化趋势与环洱海地区城镇化快速推进有关;人类活动强度总体逐年上升,以低影响区为主且保持相对稳定.高影响区和中高影响区主要集中于环湖南侧和环湖西侧,中低影响区呈零星块状分布且一直呈减少趋势.
-
关键词:
- 谷歌地球引擎(GEE) /
- 洱海 /
- 土地利用变化 /
- 随机森林 /
- 人类活动强度
Abstract: Erhai Lake is one of the key protected lakes in China. In the past 30 years, the contradiction between economic development and human and land has become increasingly prominent. It is of great significance to study the law of land use change around Erhai Lake in a long time series and analyze the influence degree of human activities. Based on the google earth engine (GEE) cloud platform, and based on the Landsat TM/OLI image data of 7 periods from 1991 to 2020, the random forest method was adopted to classify the land use within 10 km around Erhai Lake by combining the characteristics of spectrum, normalized difference index and enhanced vegetation index. The land use change map and human activity index model were combined to quantitatively analyze the evolution trend of land use types and human activity intensity around Erhai Lake under the background of urbanization. The results show that from 1991 to 2020, the area of forest land and grassland showed a decreasing trend, and the main direction was farmland. The area of construction land continued to increase, and the main source was farmland. The change of water area was small, and the wetland showed a trend of increasing first and then decreasing. The intensity of human activities increased year by year, mainly in the low-impact areas and remained relatively stable. The high-impact areas and medium-high impact areas were mainly concentrated in the south and west of the surrounding lake. The medium-low impact areas presented a sporadic and block-like distribution and a decreasing trend.-
Key words:
- Google earth engine (GEE) /
- erhai /
- land use change /
- random forest /
- intensity of human activity
-
表 1 不同土地利用类型人类活动强度系数
参数 林地 草地 耕地 水域 建设用地 湿地 Lohani 0.12 0.09 0.61 0.12 0.96 0.38 Leopold 0.14 0.08 0.59 0.13 0.94 0.42 Delphi 0.12 0.09 0.64 0.15 0.95 0.55 平均值 0.13 0.09 0.61 0.13 0.95 0.45 表 2 1991—2020年环洱海地带土地利用分类精度评价
年份 总体分类精度/% Kappa系数 1991 91.52 0.888 1995 93.22 0.911 2000 91.50 0.889 2005 94.95 0.935 2010 92.30 0.941 2015 94.94 0.932 2020 92.58 0.902 表 3 1991—2020年环洱海地区土地利用变化量
时段 年份 变化量 林地 草地 耕地 水体 建设用地 湿地 1991—2000 1991年 面积/km2 533.28 203.69 507.91 248.21 50.49 5.69 比例/% 34.42 13.15 32.78 16.02 3.26 0.37 ∆I 99.82 111.96 131.29 0.55 44.52 6.43 ∆D 86.49 132.34 149.90 6.26 16.07 3.51 ∆W 13.33 −20.38 −18.62 −5.71 28.46 2.92 2000—2010 2000年 面积/km² 546.26 183.39 489.71 242.50 78.77 8.62 比例/% 35.26 11.84 31.61 15.65 5.08 0.56 ∆I 67.42 109.10 141.83 3.18 30.15 7.84 ∆D 77.35 116.31 131.97 1.52 27.73 4.63 ∆W −9.93 −7.22 9.86 1.66 2.42 3.20 2010—2020 2010年 面积/km² 536.24 176.60 499.17 244.14 81.14 11.97 比例/% 34.61 11.40 32.22 15.76 5.24 0.77 ∆I 56.73 55.21 110.52 1.44 42.16 6.10 ∆D 74.62 101.20 66.79 2.11 19.02 8.41 ∆W −17.89 −45.99 43.73 −0.67 23.14 −2.31 2020年 面积/km² 518.50 183.72 489.74 243.51 104.24 9.55 比例/% 33.47 11.86 31.61 15.72 6.73 0.62 注:∆I为增加量;∆D为减少量;∆W为净变化量. 表 4 1991-2020年环洱海地区土地利用变化模式图谱特征
图谱变化模式 面积/km² 占总面
积比率/%主要转移类型 面积/km² 稳定不变型 1013.97 65.45 水体-水体-水体 240.90 后期变化型 192.47 12.42 林地-林地-草地 39.25 草地-草地-耕地 34.59 耕地-耕地-建设用地 35.54 前期变化型 177.63 11.47 草地-林地-林地 33.96 草地-耕地-耕地 30.80 耕地-林地-林地 24.92 反复变化型 92.44 5.97 耕地-草地-耕地 27.45 连续变化型 72.75 4.70 耕地-草地-林地 8.48 -
[1] 冯丁饶, 谢炘格, 雷昊仪, 等. 基于遥感技术与数学模型的土地利用/覆盖变化研究进展[J]. 湖北农业科学, 2018, 57(13): 5-9,12. [2] 胡云锋, 商令杰, 张千力, 等. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583. [3] 娄佩卿, 付波霖, 林星辰, 等. 基于GEE的1998—2018年京津冀土地利用变化对生态系统服务价值的影响[J]. 环境科学, 2019, 40(12): 5473-5483. [4] PHAN T N, KUCH V, LEHNERT L W. Land cover classification using google earth engine and random forest classifier—the role of image composition[J]. Remote sensing, 2020, 12(15): 2411. DOI: 10.3390/rs12152411 [5] 许泉立, 杨昆, 王桂林, 等. 基于蚁群算法的洱海流域土地利用变化模拟[J]. 农业工程学报, 2014, 30(19): 290-299,340. [6] 王天山, 郑寒. 城市化过程中环洱海区域土地利用及景观格局变化分析[J]. 生态经济, 2016, 32(1): 181-185. [7] 王涛, 张超, 于晓童, 等. 洱海流域土地利用变化及其对景观生态风险的影响[J]. 生态学杂志, 2017, 36(7): 2003-2009. [8] 张磊, 武友德, 李君. 观景公路沿线土地利用变化特征分析——以大理洱海东环海路为例[J]. 长江流域资源与环境, 2018, 27(12): 2707-2717. [9] LIU, C C, ZHANG Y C, CHEN PY, et al. Clouds classification from sentinel-2 imagery with deep residual learning and semantic image segmentation[J]. Remote sensing, 2019, 11(2): 119. DOI: 10.3390/rs11020119 [10] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5-32. DOI: 10.1023/A:1010933404324 [11] 王猛, 张新长, 王家耀, 等. 结合随机森林面向对象的森林资源分类[J]. 测绘学报, 2020, 49(2): 235-244. [12] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. Isprs journal of photogrammetry and remote sensing, 2012(67): 93-104. DOI: 10.1016/j.isprsjprs.2011.11.002 [13] 赵丹平, 顾海燕, 贾莹. 机器学习法在面向对象影像分类中的对比分析[J]. 测绘科学, 2016, 41(10): 181-186. [14] 王李娟, 孔钰如, 杨小冬, 等. 基于特征优选随机森林算法的农耕区土地利用分类[J]. 农业工程学报, 2020, 36(4): 244-250. [15] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[DS/OL]. [2021-04-01]. 据注册与出版系统, 2018. DOI: 10.12078/2018070201. [16] 唐常春, 李亚平. 多中心城市群土地利用/覆被变化地学信息图谱研究——以长株潭城市群为例[J]. 地理研究, 2020, 39(11): 2626-2641. [17] 段群滔, 罗立辉. 人类活动强度空间化方法综述与展望——以青藏高原为例[J]. 冰川冻土, 2021, 43(1): 1-12. [18] 严恩萍, 林辉, 王广兴, 等. 1990—2011年三峡库区生态系统服务价值演变及驱动力[J]. 生态学报, 2014, 34(20): 5962-5973. [19] 南箔, 杨子寒, 毕旭, 等. 生态系统服务价值与人类活动的时空关联分析——以长江中游华阳河湖群地区为例[J]. 中国环境科学, 2018, 38(9): 3531-3541.