Study on surface deformation of Longyangxia hydropower station reservoir area based on BDS and InSAR
-
摘要: 目前北斗卫星导航系统(BDS)、连续运行参考站系统(CORS)和合成孔径雷达干涉测量(InSAR)技术发展迅猛,前景广阔. 但是利用上述技术监测库区形变研究聚焦点是人工建筑,并未验证BDS的可用性,也未融合CORS技术的优势. 针对此问题,结合BDS和CORS高时间分辨率,InSAR高空间分辨率的优势,以龙羊峡库区为研究区域探索合适的结合监测方案. 研究结果表明:龙羊峡库区在研究时期内存在大面积的地表形变区,最大沉降速率52.48 mm/a;最大抬升速率43.60 mm/a;以全球卫星导航系统(GNSS)静态解算成果为参考值进行验证,BDS实时动态(RTK)差分监测成果的精度为7.1 mm,InSAR监测成果的精度为4.4 mm,均满足形变监测的精度要求;采用InSAR进行大面积形变区筛选,再结合CORS利用BDS进行重点区域实时动态差分监测的模式对水库全方位形变监测是可行的.
-
关键词:
- 龙羊峡水电站 /
- 北斗卫星导航系统(BDS) /
- 合成孔径雷达干涉测量(InSAR) /
- 连续运行参考站系统(CORS) /
- 地表形变
Abstract: At present, BeiDou Navigation Satellite System (BDS), continuously operation reference sations (CORS) and synthetic aperture radar interferometry (InSAR) are developing rapidly and have a bright future. However, the focus of using the above technology to monitor the deformation of the reservoir area is artificial buildings, which does not verify the availability of BDS or integrate the advantages of CORS technology. In view of this problems, combined with the advantages of BDS and CORS with high temporal resolution and InSAR high spatial resolution, a suitable combined monitoring scheme is explored in Longyangxia reservoir area. The results show that: there is a large area of surface deformation area in Longyangxia reservoir area during the study period, with the maximum subsidence rate of 52.48 mm/a and the maximum uplift rate of 43.60 mm/a. The accuracy of BDS real-time dynamic difference monitoring results is 7.1 mm, and the accuracy of InSAR monitoring results is 4.4 mm, which meet the precision of deformation monitoring It is feasible to use InSAR to screen large area deformation area and combine CORS with BDS for real-time dynamic difference monitoring of key areas.sults is 4.4 mm, which meet the precision of deformation monitoring It is feasible to use InSAR to screen large area deformation area and combine CORS with BDS for real-time dynamic difference monitoring of key areas. -
表 1 基线向量重复性统计表
方向 固定误差/mm 相对精度/10−7 南北 1.21 0.41 东西 1.49 0.05 垂直 1.93 0.17 基线长度 0.65 0.06 表 2 BDS实时动态监测成果精度计算表
mm 日期 残差 B052 B083 B094 B097 B117 2019-05-26 0.0 0.0 0.0 0.0 0.0 2019-05-27 −4.4 −3.6 −3.7 1.4 −5.2 2019-06-19 −4.2 −5.6 −4.7 −0.5 −5.5 2019-07-06 −5.5 −3.6 −7.1 −1.2 −5.7 2019-07-25 −1.9 7.0 −6.6 −7.0 −1.8 2019-08-18 7.1 11.2 6.4 4.3 3.2 2019-08-19 0.8 5.7 −3.3 −6.7 4.9 2019-09-08 9.2 15.9 7.2 3.8 9.3 2019-09-23 4.1 8.3 0.3 −0.7 8.2 2019-10-02 10.1 16.6 8.8 7.3 10.6 2019-10-17 12.0 20.9 9.2 8.7 13.9 2019-10-22 3.5 13.2 3.5 −1.9 11.6 外符合 6.3 11.1 5.8 4.7 7.8 精度 7.1 表 3 InSAR监测成果精度计算表
mm 日期 残差 B052 B083 B094 B097 B0117 2019-05-26 0.0 0.0 0.0 0.0 0.0 2019-06-19 2.3 −4.3 2.8 1.1 0.0 2019-07-25 7.4 −8.2 4.7 8.4 3.2 2019-08-18 5.4 −0.3 2.7 11.4 −1.0 2019-09-23 0.7 −2.3 1.2 10.1 −1.1 2019-10-17 −4.7 −6.4 −3.9 2.4 −6.1 外符合 4.3 4.7 3.0 7.2 2.9 精度 4.4 -
[1] 杨潇潇. 时序 InSAR 技术用于大坝形变监测与变形模式研究[D]. 西安: 长安大学, 2017. [2] 肖儒雅, 何秀凤. 时序 InSAR 水库大坝形变监测应用研究[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1334-1341. [3] HU B, CHEN J Y, ZHANG X F. Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS[J]. Sensors, 2019, 19(14): 3181. DOI: 10.3390/s19143181 [4] 王腾, PERISSIN D, ROCCA F, 等. 基于时间序列 SAR 影像分析方法的三峡大坝稳定性监测[J]. 中国科学:地球科学, 2011, 41(1): 110-123. [5] 裴媛媛, 廖明生, 王寒梅. 时间序列SAR影像监测堤坝形变研究[J]. 武汉大学学报(信息科学版), 2013, 38(3): 266-269. [6] 张明晶. 横泉水库大坝表面位移变形自动化监测系统应用与分析[J]. 山西水利科技, 2020(3): 65-66. DOI: 10.3969/j.issn.1006-8139.2020.03.020 [7] MILILLO P, BÜRGMANN R, LUNDGREN P, et al. Space geodetic monitoring of engineered structures: the ongoing destabilization of the mosul dam, iraq[J]. Scientific reports, 2016(6): 37408. DOI: 10.1038/srep37408 [8] 刘世英, 卢凯章. 黄河上游龙羊峡-寺沟峡段大型滑坡遥感调查[J]. 青海大学学报(自然科学版), 2007, 5(4): 17-21. DOI: 10.3969/j.issn.1006-8996.2007.04.005 [9] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE transactions on geoscience and remote sensing, 2002, 40(11): 2375-2383. DOI: 10.1109/TGRS. 2002.803792 [10] 武丽梅, 金丽华, 季碗栎. 结合SBAS技术的鲁西南地区地面沉降监测[J]. 测绘通报, 2019(1): 108-113. [11] 詹景祥, 千喜俊, 闫成龙. 利用SBAS技术监测洛杉矶地区地表形变[J]. 测绘工程, 2018, 27(6): 45-49. [12] 郭乐萍, 岳建平, 岳顺. SBAS技术在南京河西地表沉降监测中的应用[J]. 测绘通报, 2017(3): 26-28,41. [13] 罗银飞, 许伟林, 田浩. 黄河龙羊峡库区地质环境条件与滑坡灾害发育特征[C]//2011年全国工程地质学术年会, 2011: 75-79. [14] 刘邢巍, 蒲德祥, 高翔. 基于GAMIT0.61的高精度 GPS/BDS数据处理及精度对比分析[J]. 全球定位系统, 2018, 43(5): 77-83. [15] 张永荥, 李征, 贡宝扎西. QHCORS CGCS2000坐标框架维持及精度分析[J]. 青海大学学报, 2019, 37(5): 39-46. [16] 殷志强, 魏刚, 祁小博, 等. 黄河上游寺沟峡-拉干峡段滑坡时空特征及对气候变化的响应研究[J]. 工程地质学报, 2013, 21(1): 129-137. DOI: 10.3969/j.issn.1004-9665.2013.01.017 [17] 殷志强, 程国明, 胡贵寿, 等. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J]. 工程地质学报, 2010, 18(1): 41-51. DOI: 10.3969/j.issn.1004-9665.2010.01.006 [18] 尚红, 刘天海, 杨怀宁. 峡谷型水库地壳形变流动监测技术研究[J]. 大地测量与地球动力学, 2010, 30(4): 74-78.