A summary of research on GNSS-R signal-to-noise ratio signal height measurement technology on the sea
-
摘要: 自全球卫星导航反射信号(GNSS-R)概念提出以来,GNSS-R被广泛应用于遥感方面. 如海面测高,海面风场反演,海冰检测等多个方面. 文中主要介绍了GNSS-R遥感技术在海面测高的应用和研究进展,着重介绍了基于信噪比(SNR)数据测量方法的研究进展,简述了SNR数据测量方法所涉及的理论和信号处理的办法,并根据现有的研究进展,对未来海面测高的发展方向进行展望.
-
关键词:
- 全球卫星导航系统(GNSS) /
- 全球卫星导航反射信号 (GNSS-R) /
- 海面测高 /
- 信噪比(SNR) /
- 海面遥感
Abstract: Since the concept of Global Navigation Satellite Reflected Signal (GNSS-R) was proposed, GNSS-R has been widely used in remote sensing, and has been used in sea surface height measurement, sea surface wind field inversion, sea ice detection and other aspects. This article mainly introduces the application and research progress of GNSS-R remote sensing technology in sea surface height measurement. Highlights the research progress based on signal-to-noise (SNR) ratio data measurement methods, and briefly describes the theory and signal processing methods involved in SNR ratio data measurement methods and according to the current research progress. The future development direction of sea surface altimetry is prospected. -
表 1 LSP法和拟合法反演结果
m 方法 平均误差 均方根误差(RMSE) LSP 0.011 0.02875 拟合法 0.008 0.02485 表 2 LSP法、加窗LSP法和小波法反演结果
方法 标准差/cm 相关系数 反演点数 LSP 13.09 0.96 432 WinLSP 22.85 0.96 1 770 Wavelet 14.47 0.96 29 703 -
[1] 陈俊任, 周晓华, 余彬彬. 海洋测绘中压力式验潮仪零点漂移修正方法[J]. 测绘技术装备, 2018, 20(4): 84-86, 77. DOI: 10.3969/j.issn.1674-4950.2018.04.026 [2] HALL C D, CORDEY R. Multistatic scatterometry[C]//International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century, 1988. DOI: 10.1109/IGARSS.1988.570200 [3] CAMPS A, PARK H, PABLOS M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 1-13. DOI: 10.1109/JSTARS.2016.2588467 [4] CLARIZIA M P, PIERDICCA N, COSTANTINI F, et al. Analysis of CYGNSS data for soil moisture retrieval[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2019, 12(7): 2227-2235. DOI: 10.1109/JSTARS.2019.2895510 [5] EROGLU O, KURUM M, BOYD D R, et al. High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks[J]. Remote sensing, 2019, 11(19): 2272. DOI: 10.3390/rs11192272 [6] KATZBERG S J, TORRES O, GRANT M S, et al. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02[J]. Remote sensing of environment, 2006, 100(1): 17-28. DOI: 10.1016/j.rse.2005.09.015 [7] ARROYO A A, CAMPS A, AGUASCA A, et al. Dual-polarization GNSS-R interference pattern technique for soil moisture mapping[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1533-1544. DOI: 10.1109/JSTARS.2014.2320792 [8] CALABIA A, MOLINA I, JIN S G. Soil moisture content from GNSS reflectometry using dielectric permittivity from fresnel reflection coefficients[J]. Remote sensing, 2020, 12(1): 122. DOI: 10.3390/rs12010122 [9] JIN S G, NAJIBI N. Sensing snow height and surface temperature variations in greenland from GPS reflected signals[J]. Advances in space research, 2014, 53(11): 1623-1633. DOI: 10.1016/j.asr.2014.03.005 [10] JIN S G, QIAN X D, KUTOGLU H. Snow depth variations estimated from GPS-reflectometry: a case study in Alaska from L2P SNR data[J]. Remote sensing, 2016, 8(1): 63. DOI: 10.3390/rs8010063 [11] MCCREIGHT J L, SMALL E E, LARSON K M. Snow depth, density, and SWE estimates derived from GPS reflection data: validation in the western US[J]. Water resources research, 2014, 50(8): 6892-6909. DOI: 10.1002/2014WR015561 [12] NAJIBI N, JIN S G. Physical reflectivity and polarization characteristics for snow and ice-covered surfaces interacting with GPS signals[J]. Remote sensing, 2013, 5(8): 4006-4030. DOI: 10.3390/rs5084006 [13] NAJIBI N, JIN S G, WU X R. Validating the variability of snow accumulation and melting from GPS-reflected signals: forward modeling[J]. IEEE transactions on antennas and propagation, 2015, 63(6): 2646-2654. DOI: 10.1109/TAP.2015.2414950 [14] MALIK J S, BHATTI U I. Remote sensing of ocean, ice and land surfaces using bistatically scattered GNSS signals from low earth orbit[C]//The 4th International Conference on Aerospace Science and Engineering (ICASE), 2015. DOI: 10.1109/ICASE.2015.7489519 [15] YAN Q Y, HUANG W M. Spaceborne GNSS-R sea ice detection using delay-doppler maps: first results from the UK TechDemoSat-1 mission[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4795-4801. DOI: 10.1109/JSTARS.2016.2582690 [16] YAN Q Y, HUANG W M. Sea ice sensing from GNSS-R data using convolutional neural networks[J]. IEEE geoscience and remote sensing letters, 2018, 15(10): 1510-1514. DOI: 10.1109/LGRS.2018.2852143 [17] YAN Q Y, HUANG W M. Detecting sea ice from TechDemoSat-1 data using support vector machines with feature selection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2019, 12(5): 1409-1416. DOI: 10.1109/JSTARS.2019.2907008 [18] LI C, HUANG W M. Sea surface oil slick detection from GNSS-R delay-doppler maps using the spatial integration approach[C]//IEEE Radar Conference (RADAR), 2013. DOI: 10.1109/RADAR.2013.6585990 [19] VALENCIA E, CAMPS A, PARK H, et al. Oil slicks detection using GNSS-R[C]//IEEE International Geoscience and Remote Sensing Symposium, 2011. DOI: 10.1109/IGARSS.2011.6050203 [20] VALENCIA E, CAMPS A, RODRIGUEZ-ALVAREZ N, et al. Using GNSS-R imaging of the ocean surface for oil slick detection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2012, 6(1): 217-223. DOI: 10.1109/JSTARS.2012.2210392 [21] 陈闪闪, 张云, 洪中华, 等. GNSS 反射信号海面溢油回波 DDM 仿真研究[J]. 全球定位系统, 2017, 42(3): 15-19. [22] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355. [23] SOULAT F, CAPARRINI O, GERMAIN P, et al. Sea state monitoring using coastal GNSS-R[J]. Geophysical research letters, 2004, 31(21): 303. DOI: 10.1029/2004GL020680 [24] LARSON K M, LÖFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in space research, 2013, 51(8): 1301-1310. DOI: 10.1016/j.asr.2012.04.017 [25] RIBOT M A, KUCWAJ J C, BOTTERON C, et al. Normalized GNSS interference pattern technique for altimetry[J]. Sensors (basel), 2014, 14(6): 10234-10257. DOI: 10.3390/s140610234 [26] CARDELLACH E, FABRA F, NOGUÉS-CORREIG O, et al. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: application to the GOLD-RTR data sets[J]. Radio science, 2011, 46(6): RS0C04. DOI: 10.1029/2011RS004683 [27] GEREMIA-NIEVINSKI F G, LARSON K M. Inverse modeling of GPS multipath for snow depth estimation—part Ⅱ: application and validation[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(10): 6564-6573. DOI: 10.1109/TGRS.2013.2297688 [28] 吴夏平, 王福明. 基于最小二乘法原理的趋势项处理研究[J]. 微计算机信息, 2008, 24(30): 254-255. DOI: 10.3969/j.issn.1008-0570.2008.30.102 [29] STRANDBERG J, HOBIGER T, HAAS R. Improving GNSS-R sea level determination through inverse modeling of SNR data[J]. Radio science, 2016, 51(8): 1286-1296. DOI: 10.1002/2016RS006057 [30] 李惟, 朱云龙, 王峰, 等. GNSS 多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 1239-1245. [31] LOMB N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and space science, 1976, 39(2): 447-462. DOI: 10.1007/BF00648343 [32] SCARGLE J D. Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data[J]. The astrophysical journal, 1982(263): 835-853. DOI: 10.1086/160554 [33] 马秀红, 曹继平, 董晟飞. 小波分析及其应用[J]. 微机发展, 2003, 13(8): 58-61. [34] WANG X L, ZHANG Q, ZHANG S C. Water levels measured with SNR using wavelet decomposition and lomb–scargle periodogram[J]. GPS solutions, 2018, 22(1): 22. DOI: 10.1007/s10291-017-0684-8 [35] CHEN F, LIU L L, GUO F. Sea surface height estimation with multi-GNSS and wavelet de-noising[J]. Scientific reports, 2019, 9(1): 15181. DOI: 10.1038/s41598-019-51802-9 [36] 苏晓容, 张云, 韩彦岭, 等. 岸基 GNSS 单天线潮位高度小波分析反演[J]. 导航定位学报, 2019, 7(4): 87-93. DOI: 10.3969/j.issn.2095-4999.2019.04.016 [37] 王杰, 何秀凤, 王笑蕾, 等. 小波分析在 GNSS-IR 潮位反演中的应用[J]. 导航定位学报, 2020, 8(2): 82-89. DOI: 10.3969/j.issn.2095-4999.2020.02.014 [38] MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE transactions on pattern analysis and machine intelligence, 1989, 11(7): 674-693. DOI: 10.1109/34.192463 [39] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of basic engineering, 1960(82D): 35-45. DOI: 10.1115/1.3662552 [40] JAZWINSKI A H. Stochastic process and filtering theory, academic press[M]. A subsidiary of Harcourt Brace Jovanovich Publishers, 1970. [41] WAN E A, MERWE R V D. The unscented Kalman filter for nonlinear estimation[C]//IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), 2000: 153-158. DOI: 10.1109/ASSPCC.2000.882463 [42] STRANDBERG J, HOBIGER T, HAAS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS solutions, 2019, 23(3): 61. DOI: 10.1007/s10291-019-0851-1