Space alignment of ground-based augmentation system and instrument landing system
-
摘要: 陆基增强系统(GBAS)与仪表着陆系统(ILS)输出的导航信息基准不同,若要利用数据融合技术实现二者的联合共用,首要问题就是对不同的导航信息进行空间对准. 本文作者研究了GBAS与ILS的偏移指示方式,详细推导了GBAS与ILS的空间对准算法,开发了X-Plane飞行数据交互分析系统. 利用该系统从X-Plane中采集飞行数据,对所给空间对准算法进行仿真验证. 仿真结果表明,所提出的空间对准算法能有效将GBAS与ILS的导航信息转换到统一基准之下,可为GBAS与ILS的数据融合研究提供必要的理论支持.
-
关键词:
- 数据融合 /
- 空间对准 /
- 陆基增强系统(GBAS) /
- 仪表着陆系统(ILS) /
- X-Plane
Abstract: The benchmark of navigation information output by Ground-Based Augmentation System (GBAS) and instrument landing system(ILS) is different. If the data fusion technology is to be used to realize the combination and sharing of the two, the first problem is to align the different navigation information in space. The deviation indication methods of GBAS and ILS are studied and the spatial alignment algorithms of GBAS and ILS are deduced in detail. The X-Plane flight data interaction and analysis system is developed, and the system is used to collect flight data from X-Plane to simulate and verify the given space alignment algorithm. As show in the simulation results, the navigation information of GBAS and ILS can be effectively converted to the unified reference by the proposed space alignment algorithm. Theoretical support for the data fusion research of GBAS and ILS is provided. -
表 1 GBAS与ILS空间对准关键点位置
(°) 坐标位置 经度 纬度 GS 121.824 261 111 31.129 338 889 DME 121.824 261 111 31.129 338 889 LOC 121.810 838 889 31.161 416 667 LTP/FTP 121.824 072 222 31.126 350 000 GERP 121.823 039 137 31.129 087 410 FPAP 121.811 776 339 31.158 920 141 GARP 121.810 790 622 31.161 530 151 -
[1] 李紫丹. 基于回波模型多径效应对航向信标系统的影响研究[D]. 长春: 吉林大学, 2014. [2] 朱峰, 翁文雯, 谢雨轩, 等. 多径效应对航向信标系统电磁环境影响分析[J]. 系统工程与电子技术, 2019, 12(41): 2703-2709. [3] FELUX M. Total system performance of GBAS-based automatic landings[D]. Munich: Technical University of Munich, 2018. [4] RTCA. Minimum operational performance standards for GPS local area augmentation system airborne equipment[S]. Special committee 159(SC-159) and approved by the RTCA program management committee(PMC), 2000. [5] FAA. Aeronautical information manual, official guide to basic flight information and ATC procedures[S]. U.S. Dapartment of transportation 2014. [6] GREEN R M. Spherical astronomy[M]. Cambridge: Cambridge University Press, 1985. [7] WILLIAMS E. Aviation formulary V1.46[EB/OL]. [2020-12-26]. Aviation, 2011. http://www.edwilliams.org/avform.htm [8] NANDURI A, SHERRY L. Generating flight operations quality assurance data from the X-Plane simulation[C]//2016 Integrated Communications Navigation and Surveillance, 2016. DOI: 10.1109/ICNSURV.2016.7486355 [9] JUNIOR J M M, KHAMVILAI T, SUTTER L, et al. Test platform for autopilot system embedded in a model of multi-core architecture using X-Plane flight simulator[C]//2019 IEEE/AIAA 38th Digital Avionics Systems Conference, 2019. DOI: 10.1109/DASC43569.2019.9081788 [10] AGASTYA T I G A, KUSUMOPUTRO B. Data acquisition for rocket model identification with aircraft simulator X-Plane and MATLAB[C]//2019 the 16th International Conference on Quality in Research: International Symposium on Electrical and Computer Engineering, 2019. DOI: 10.1109/QIR.2019.8898281 [11] ÇETIN E, KUTAY A. Automatic landing flare control design by model-following control and flight test on X-Plane flight simulator[C]// 2016 the 7th International Conference on Mechanical and Aerospace Engineering, 2016: 416-420. DOI: 10.1109/ICMAE.2016.7549576