Research on positioning technology based on Iridium burst signal
-
摘要: 全球导航卫星系统(GNSS)存在落地信号弱、易受干扰等问题,而低轨卫星系统因其较高的信号落地功率、较低的信号空间损耗以及较好的多普勒特性逐渐成为导航领域的研究热点. 铱星星座是目前唯一已实现全球覆盖的低轨卫星系统,其提供的授时与定位(STL)能力主要服务于美国军方,具体信号体制及接收处理技术均未公开发布. 通过对铱星STL突发信号体制开展深入研究及解析,提出利用STL突发信号实现非合作导航定位,并通过实收信号完成了定位解算算法验证,实收试验结果表明所提算法能够实现精度优于100 m的定位. 研究成果能够为我国低轨导航系统建设提供理论基础,有效推进下一代卫星导航系统持续发展.
-
关键词:
- 低轨卫星 /
- 铱星星座 /
- 授时与定位(STL)服务 /
- 突发信号
Abstract: Global Navigation Satellite System (GNSS) has weak landing signal and is vulnerable to interference, etc., while low-orbit satellite system has gradually become a research hotspot in the navigation field due to its high landing power, low signal space loss and good Doppler characteristics. Iridium is the only low orbit satellite system that has achieved global coverage. Its satellite time and location(STL) capabilities are mainly for the US military. The specific signal system and processing technology have not been publicly released. Through in-depth study and analysis of Iridium STL burst signal system, this paper proposes to realize non-cooperative navigation and positioning by using STL burst signal, and completes the verification of positioning algorithm by receiving STL burst signal. The result shows that the proposed algorithm can achieve positioning accuracy better than 100 m. The research results can provide a theoretical basis for the construction of China’s low-orbit navigation system and effectively promote the sustainable development of the next generation of satellite navigation system. -
表 1 铱星单工通道频带分配表
信道 中心频率/MHz 作用 1 1626.020833 保护信道 2 1626.062500 保护信道 3 1626.104167 第四消息信道 4 1626.145833 第三消息信道 5 1626.187500 保护信道 6 1626.229167 保护信道 7 1626.270833 振铃报警 8 1626.312500 保护信道 9 1626.354167 保护信道 10 1626.395833 第二消息信道 11 1626.437500 第一消息信道 12 1626.479167 保护信道 表 2 突发信号结构表
结构 字节/bit 前导码和链路控制字 102 铱星无线电链路协议(包括24位帧校验序列) 56 铱星2层转播(I-L2R) 8 用户载荷 248 合计 414 表 3 STL与GNSS性能对比
特性 GNSS STL 相对于UTC
授时精度/ns20 200 定位精度/m 3 20~50 商业应用 在用 在用 抗欺骗能力 GNSS:仅限
军用信号采用加密信号,需要信号认证,有较强的抗欺骗能力 抗干扰能力 微弱信号
易受干扰落地功率较GNSS强30~40 dB,有强抗干扰性能 覆盖范围 全球在极地精度
有所衰减全球覆盖极地区域 室内 无法实现室内定位 能够提供室内定位服务 嵌入式数据/通信通道 无 低速,相同的天线卫通
速率更高 -
[1] ZHAO Y. Brief probe on application of compass navigation satellite system in the fields of sea, land and air[C]//2017 2nd International Conference on Materials Science, Machinery and Energy Engineering(MSMEE 2017), 2017: 212-217. DOI: 10.2991/msmee-17.2017.329 [2] ENGE P, WALTER T, PULLEN S, et al. Wide area augmentation of the global positioning system[J]. Proceedings of the IEEE, 1996, 84(8): 1063-1088. DOI: 10.1109/5.533954 [3] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. DOI: 10.11947/j.AGCS.2016.20160127 [4] LAWRENCE D, COBB H S, GUTT G, et al. Test results from a LEO-satellite-based assured time and location[C]//2016 International Technical Meeting of the Institute of Navigation, 2016: 125-129. DOI: 10.33012/2016.13416 [5] LEMME P W; GLENISTER S M, MILLER A W. Iridium(R) aeronautical satellite communications[J]. IEEE aerosp and electronic systtems magazine[J]. 1999, 14(11): 11-16. DOI: 10.1109/62.809197 [6] Satelles Time and Location Signals [EB/OL]. [2020-12-10]. https://satelles.com/wp-content/uploads/pdf/Satelles-White-Paper-2019.pdf [7] LI B F, GE H B, GE M R, et al. LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services[J]. Advances in space research, 2018, 63(1): 2 942-2 954. DOI: 10.1016/j.asr.2018.08.017 [8] 郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展[J]. 全球定位系统, 2019, 44(2): 1-12. [9] GUO S R, CAI H L, YI N M, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta geodaetica et cartographica sinica, 2019, 48(7): 810-821. DOI: 10.11947/j.AGCS.2019.20190091 [10] LI D R, SHEN X, LI D L, et al. On civil-military integrated space based real-time information service system[J]. Geomatics and information science of wuhan university, 2017, 42(11): 1501-1505. DOI: 10.13203/j.whugis20170227 [11] FAN S Y, ZHAO L J, XIAO W J, et al. Performance analysis and simulation of Iridium navigation satellite based on STK[C]//2012 Second International Workshop on Earth Observation and Remote Sensing Applications, 2012. DOI: 10.1109/EORSA.2012.6261185 [12] GUTT G, LAWRENCE D, COBB S, et al, Recent PNT improvements and test results based on low earth orbit satellites[C]//2018 International Technical Meeting of The Institute of Navigation. DOI: 10.33012/2018.15586 [13] 杨波. 低轨卫星增强导航技术研究[D]. 成都: 电子科技大学, 2017. [14] WANG L, CHEN R Z, XU B Z, et al. The challenges of LEO based navigation augmentation system—lessons learned from luojia-1A satellite[C]//China Satellite Navigation Conference (CSNC) 2019 Proceedings, 2019: 298-310. DOI: 10.1007/978-981-13-7759-4_27 [15] John Pratt, Penina. Axelrad Recent PNT Improvements and Test Results Based on Low Earth Orbit Satellites[C/OL]. Proceedings of the 49th Annual Precise Time and Time Interval Systems and Applications Meeting, 2018(1): 72-79. https://www.ion.org/publications/abstract.cfm?articlelD:15606 [16] LAWRENCE D, COBB H S, GUTT G, et al. Test results from a LEO-satellite-based assured time and location solution[C]//2016 International Technical Meeting of The Institute of Navigation, 2016: 125-129. DOI: 10.33012/2016.13416 [17] LI D R, SHEN X, GONG J Y, et al. On construction of China’s space information network[J]. Geomatics and information science of wuhan university, 2015, 40(6): 711-715. DOI: 10.13203/j.whugis20150021 [18] TAN Z Z, QIN H L, CONG L, et al. New method for positioning using IRIDIUM satellite signals of opportunity[J]. IEEE access, 2019(7): 83412-83423. DOI: 10.1109/ACCESS.2019.2924470 [19] REID T, NEISH A, WALTER T, et al. Leveraging commercial broadband LEO constellations for navigation[C]// The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation, 2016. DOI: 10.33012/2016.14729