Application of neural network in SINS/GPS combined positioning
-
摘要: 地籍测量中,单一系统无法满足定位要求,组合定位技术应运而生. 其中,捷联惯性导航系统(SINS)和GPS组合定位应用最为广泛.在卫星信号受到干扰失效区域,系统进入纯SINS解算,定位误差会逐渐累积,无法满足定位精度要求. 针对此问题,提出一种长短期记忆(LSTM)神经网络辅助的组合定位算法. 根据LSTM神经网络能够有效运用于长距离时间序列的特性,在GPS有效区域,用卡尔曼滤波(KF)算法对SINS/GPS信号进行数据融合得到精确定位信息,同时利用惯性测量单元(IMU)、GPS和SINS输出信息对神经网络进行训练;在GPS失效区域,利用训练好的神经网络预测GPS位置信息,使得系统能继续用卡尔曼滤波器滤波. 最后结合地籍测量特点,设计了仿真实验,证明了该算法在GPS信号失效时可以有效抑制系统误差发散、提高定位精度,在不同运动状态下依然可以满足定位精度要求、鲁棒性强.Abstract: In cadastral surveying, a single system cannot meet the positioning requirements, and combined positioning technology has emerged. Among them, the strapdown inertial positioning system (SINS) and the GPS combined positioning are most widely used. In areas where satellite signals are interfered and failed, the system enters the pure SINS solution, and the positioning error will gradually accumulate and cannot meet the positioning accuracy requirements. In response to this problem, this paper proposes a combined positioning algorithm assisted by long and short-term memory (LSTM) neural network. According to the characteristics of LSTM neural network that can be effectively applied to long-distance time series, in the GPS effective area, the Kalman filtering (KF) algorithm is used to compare SINS/ GPS signal data fusion to obtain precise positioning information, while using inertial measurement unit (IMU), GPS and SINS output information is used to train the neural network; in the GPS failure area, the trained neural network to predict GPS location information is used, so that the system can continue filter with Kalman filter. Finally, combined with the characteristics of cadastral measurement, a simulation experiment was designed to prove that the algorithm can effectively suppress system error divergence and improve positioning accuracy when GPS signal fails, and it can still meet positioning accuracy requirements under different motion states with strong robustness.
-
Key words:
- Kalman filtering (KF) /
- combined positioning /
- cadastral survey /
- signal failure /
- neural network
-
表 1 GPS信号“失效”
序号 “失效”时间段/s 运动状态 时间长度/s #1 360~375 直线 15 #2 420~450 左转弯 30 #3 756~786 右转弯 30 #4 830~860 直线 30 表 2 验证集
序号 时间段/s 运动状态 时间长度/s @1 186~216 左转弯 30 @2 590~620 直线 30 @3 980~1 010 右转弯 30 表 3 不同位置RMSE
m 序号 SINS/GPS SINS/LSTM SINS 东向 北向 东向 北向 东向 北向 #1 0.01985 0.05726 0.19553 0.69694 0.29469 0.28168 #2 0.03834 0.11582 0.45434 0.65870 0.10611 1.02962 #3 0.01170 0.06454 0.35256 0.26416 0.15256 3.54656 #4 0.05020 0.11856 0.28049 0.56477 0.83422 2.87904 表 4 速度RMSE
m/s 序号 SINS/GPS SINS/LSTM SINS 东向 北向 东向 北向 东向 北向 #1 0.00930 0.02420 0.06171 0.01884 0.04736 0.04916 #2 0.00612 0.01303 0.05177 0.01450 0.08121 0.06416 #3 0.00846 0.00423 0.01645 0.00802 0.30660 0.05234 #4 0.00487 0.01088 0.04659 0.01367 0.24564 0.06179 -
[1] 严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7(2): 50-64. [2] 付梦印, 邓志红, 闫莉萍. Kalman 滤波理论及其在导航系统中的应用[M]. 2版. 北京: 科学出版社, 2010. [3] 张健. 基于地籍测量的GNSS/SINS组合定位技术研究[D]. 南京: 东南大学, 2016. [4] 王永杰, 吴峻. 改进型CKF算法及其在GNSS/INS中的应用[J]. 测控技术, 2018, 37(4): 112-115, 119. DOI: 10.3969/j.issn.1000-8829.2018.04.025 [5] 严甲汉, 郭承军. 卷积神经网络辅助的组合导航自适应滤波算法[C]//第九届中国卫星导航学术年会, 2018: 61-64. [6] 徐晓苏, 周峰, 张涛, 等. 遗传算法优化的神经网络在SINS/GPS中的应用[J]. 中国惯性技术学报, 2015, 23(3): 322-327. [7] 陈光武, 李文元, 于月, 等. 基于改进径向基神经网络的MEMS惯导系统误差抑制方法[J]. 中国惯性技术学报, 2019, 27(1): 15-22, 94. [8] 陈光武, 程鉴皓, 杨菊花, 等. 基于改进神经网络增强自适应UKF的组合导航系统[J]. 电子与信息学报, 2019, 41(7): 1766-1773. DOI: 10.11999/JEIT181171 [9] WANG G C, XU X S, YAO Y Q, et al. A novel BPNN-based method to overcome the GPS outages for INS/GPS system[J]. IEEE access, 2019(99): 1-1. DOI: 10.1109/ACCESS.2019.2922212 [10] DAI H F, BIAN H W, WANG R Y, et al. An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network[J]. Defence technology, 2020, 16(2): 334-340. DOI: 10.1016/j.dt.2019.08.011 [11] FANG W, JIANG J G, LU S Q, et al. A LSTM algorithm estimating pseudo measurements for aiding INS during GNSS signal outages[J]. Remote sensing, 2020, 12(2): 256. DOI: 10.3390/rs12020256 [12] ZHANG Y X. A fusion methodology to bridge GPS outages for INS/GPS integrated navigation system[J]. IEEE access, 2019(7): 61296-61306. DOI: 10.1109/ACCESS.2019.2911025 [13] 强明辉, 蒋文. 改进的自适应滤波算法在BDS/INS组合导航中的应用[J]. 全球定位系统, 2018, 43(3): 1-6. [14] 陈怀宇, 尹达一, 张泉. LSTM网络提高MEMS惯导定位精度的分析及验证[J]. 中国惯性技术学报, 2018, 26(5): 610-615. [15] 李世玺, 孙宪坤, 尹玲, 等. 一种基于混沌理论和LSTM的GPS高程时间序列预测方法[J]. 导航定位学报, 2020, 8(1): 65-73. DOI: 10.3969/j.issn.2095-4999.2020.01.012