Unmanned aerial vehicle realistic 3D modeling accuracy analysis considering control point uniformity
-
摘要: 无人机(UAV)倾斜摄影技术以其低成本、高效率、高精度等优点成为实景三维模型构建的主流. 实景三维模型的精度受很多因素影响,研究主要从控制点分布均匀性的角度出发,探究其对实景三维模型精度的影响,提出一种较为普适的控制点均匀性衡量指标. 研究中设计了两种不同数目的控制点实验,每种实验各包含3种不同均匀性分布方案. 使用UAV获取实验区航空影像,分别采用6种方案参与模型构建. 通过分析模型精度,结果表明:控制点均匀性较低时实景三维模型精度较差,高程精度比平面精度差;增加控制点的均匀性会提升模型的整体精度;控制点均匀性的提升对均匀性较低时模型精度的改善较高;控制点均匀性可作为一种评价指标应用于外业控制点的布设中去.Abstract: Unmanned aerial vehicle (UAV) tilt-photography technology has become the mainstream of the construction of three-dimensional real-field models with its advantages of low cost, high efficiency and high precision. The accuracy of the real 3D model is affected by many factors. This study is mainly focused on the point of view of the uniformity of the control point distribution, to explore its impact on the accuracy of the real 3D model, and propose a more general measure of control point uniformity. Two experiments with different numbers of control points are designed, and each experiment contains three different uniformity distribution schemes. Aerial images of the experimental area were obtained by UAV, and six schemes were adopted to participate in model. By analyzing the model accuracy, the results show that: the accuracy of the real 3D model is poorer when the uniformity of the control points is lower, and the elevation accuracy is worse than the plane accuracy. Increasing the uniformity of the control points will improve the overall accuracy of the model. The improvement of the uniformity of the control points will improve the accuracy of the model at a lower uniformity; the uniformity of the control points can improve the accuracy of the model at a lower uniformity. The uniformity of the control points can improve the accuracy of the model at a lower uniformity. The uniformity of the control points can improve the accuracy of the real 3D model at a lower uniformity. The uniformity of the control points can be used as an evaluation indicator in the deployment of field control points.
-
Key words:
- UAV /
- the uniformity of control point /
- adjustment calculation /
- fall measuring /
- realistic 3D models
-
表 1 不同数量下不同均匀性的控制点分布于试验区时检查点的误差
m GCP数量 均匀性 X Y Z Mpla Mall 0 无 0.8749 1.0514 19.3083 1.3678 19.3567 5 ρ5−l 0.1093 0.0997 0.9429 0.1480 0.9544 ρ5−m 0.0235 0.0219 0.0572 0.0321 0.0656 ρ5−h 0.0187 0.0201 0.0483 0.0274 0.0556 8 ρ8−l 0.0605 0.0581 0.1128 0.0839 0.1406 ρ8−m 0.0362 0.0454 0.0536 0.0581 0.0791 ρ8−h 0.0348 0.0149 0.0410 0.0379 0.0558 -
[1] 徐光禹, 杜宁, 王莉, 等. 多源数据融合技术在古建筑三维重建中的应用[J]. 测绘通报, 2019(10): 77-82. [2] 何原荣, 陈平, 苏铮, 等. 基于三维激光扫描与无人机倾斜摄影技术的古建筑重建[J]. 遥感技术与应用, 2019, 34(6): 1343-1352. [3] 刘斌, 唐雅玲, 马晨燕, 等. 无人机倾斜摄影三维模型在城市雨洪风险评估中的应用[J]. 测绘通报, 2019(10): 46-50, 66. [4] 王俊豪, 管建军, 魏云杰, 等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与灾害评价分析[J/OL]. 中国地质. (2020-04-23) [2020-07-08]. https://kns.cnki.net/kcms/detail/11.1167.P.20200423.1325.006.html. [5] 任诚, 高利敏, 冯耀楼, 等. 基于无人机倾斜摄影的建筑物三维建模尝试[J]. 测绘通报, 2019(2): 161-164. [6] 潘成军. 无人机倾斜摄影在道路工程中的应用与分析[J]. 测绘工程, 2018, 27(12): 64-69, 74. [7] 谢建春, 孙丙玉, 李文清, 等. 一种低空无人机航摄系统关键技术的试验研究[J]. 测绘通报, 2015(10): 85-87, 125. [8] 王月莉, 郭秋燕, 王西萍, 等. UCXp航摄大比例尺像控布设精度分析与研究[J]. 测绘通报, 2014(7): 75-77, 116. [9] 姜丙波, 查海林, 苏军明, 等. 无人机低空遥感的GNSS辅助稀疏像控布设方案探究[J]. 测绘通报, 2019(增刊): 314-317. [10] 刘宇硕, 秦翔, 郭万钦, 等. 控制点布设对冰川区无人机摄影测量精度的影响[J]. 遥感学报, 2020, 24(2): 161-172. [11] 陈良浩, 朱彩英, 徐青, 等. 无人机航测水域控制点布设方案的精度试验[J]. 测绘科学, 2016, 41(7): 205-210. [12] 张光祖, 王春, 徐燕, 等. 像控点布设对无人机小范围非规则区域实景建模精度的影响[J]. 全球定位系统, 2020, 45(2): 60-67. [13] 蒋春华. 利用A3数码航摄仪进行复杂地形控制点布设的研究[J]. 测绘通报, 2015(5): 84-86. [14] 范业稳, 李睿硕, 周洪波. 高分辨率航带影像像控点的布设和基准约束测量[J]. 测绘通报, 2017(4): 67-70, 107. [15] 孙艺洋. 虚拟测量在无人机测绘成果中的应用[J]. 测绘通报, 2016(7): 148-149. [16] 周旺辉, 蔡东健, 甄宗坤. 控制点布设对低空小型无人机高分影像精度的影响[J]. 测绘通报, 2017(增刊): 69-74. [17] 段平, 盛业华, 吕海洋, 等. 基于多层紧支撑径向基函数的DEM插值方法[J]. 地理与地理信息科学, 2014, 30(5): 38-41, 59. DOI: 10.3969/j.issn.1672-0504.2014.05.009 [18] FLOATER M S, ISKE A. Multistep scattered data interpolation using compactly supported radial basis functions[J]. Journal of computational and applied mathematics, 1996, 73(1-2): 65-78. DOI: 10.1016/0377-0427(96)00035-0. [19] AUGUSTINE J, PUTNAM B, ROY S. Largest empty circle centered on a query line[J]. Journal of discrete algorithms, 2010, 8(2): 143-153. DOI: 10.1016/j.jda.2009.10.002.