Coordinate time series analysis of CMONOC stations in Gansu Province considering the influence of colored noise
-
摘要: 针对甘肃省境内19个CMONOC基准站坐标时间序列结果,采用极大似然估计法(MLE)探讨了各基准站的最优噪声模型,确定了基准站的速度场,并分析了甘肃省地壳运动状况. 研究结果表明:甘肃省境内CMONOC基准站各坐标分量噪声特性存在较大的差异,“白噪声+闪烁噪声(WN+FN)”为最优噪声模型,能够更好地描述基准站坐标时间序列3分量上的噪声特性,且估算的速率不确定度是仅考虑WN时的4~15倍. 甘肃省CMONOC基准站在ITRF14框架下水平方向运动的平均速率为34.54 mm/a,运动方向为SEE 98.07°;相对于欧亚板块的水平方向运动的平均速率为6.49 mm/a,运动方向为NEE 79.23°.
-
关键词:
- 有色噪声 /
- 时间序列 /
- 极大似然估计法(MLE) /
- 噪声模型 /
- 速度场
Abstract: According to the coordinate time series results of 19 CMONOC reference stations in Gansu Province, the maximum likelihood estimate (MLE) was used to explore the optimal noise model of each reference station, the velocity field of the reference station was determined, and the crustal movement in Gansu Province was analyzed. The research results show that the noise characteristics of each coordinate component of the CMONOC reference station in Gansu Province are quite different. "WN+FN" is the optimal noise model, which can better describe the noise characteristics of the three components of the reference station coordinate time series, and The estimated rate uncertainty is 4 to 15 times when only white noise is considered. The average rate of horizontal movement of the CMONOC reference station in Gansu Province under the framework of ITRF14 is 34.54 mm/a and the direction of movement is SEE 98.07°; the average rate of horizontal movement relative to the Eurasian plate is 6.49 mm/a and the direction of movement is NEE 79.23°.-
Key words:
- the colored noise /
- time series /
- maximum likelihood estimation method /
- noise model /
- velocity field
-
表 1 甘肃省境内CMONOC站点概况
站点 经度/(°) 纬度/(°) 时间段 DXIN 100.2006 40.9837 1999.1630—2019.3356 GSAX 95.7612 40.5162 2010.7000—2019.3356 GSDH 94.6846 40.1435 2010.6315—2019.3356 GSDX 104.6046 35.5543 2010.6315—2019.3356 GSGL 102.8894 37.4548 2010.6315—2019.3356 GSGT 99.8135 39.4099 2010.6041—2019.3356 GSJN 105.7595 35.5267 2010.6342—2019.3356 GSJT 104.0571 37.1806 2010.6342—2019.3356 GSJY 98.2154 39.8084 2010.6315—2019.3356 GSLX 104.6464 34.9950 2010.6315—2019.3356 GSLZ 103.6713 36.0784 2010.6315—2019.3356 GSMA 102.0583 34.0196 2010.6671—2019.3356 GSML 100.8177 38.4411 2010.6233—2019.3356 GSMQ 103.0880 38.6324 2010.6315—2019.3356 GSMX 104.0229 34.4300 2010.5658—2019.3356 GSPL 106.5863 35.5478 2010.6123—2019.3356 GSQS 106.2119 34.7456 2010.6315—2019.3356 GSTS 105.9053 34.4845 2010.6315—2019.3356 GSWD 104.8151 33.4228 2010.6315—2019.3356 表 2 两种噪声模型下坐标时序参数估计比较
站点 方向 WN速度/(mm·a−1) WN+FN速度/(mm·a−1) WN振幅/mm WN+FN振幅/mm WN相位/rad WN+FN相位/rad GSAX N −0.23±0.01 −0.37±0.07 0.45±0.03 0.41±0.10 1.39±0.04 1.37±0.16 E 30.92±0.01 30.90±0.07 0.12±0.02 0.13±0.09 1.49±0.15 1.43±0.52 U −0.82±0.02 −0.73±0.29 0.31±0.04 0.37±0.27 −1.15±0.32 −1.37±1.11 GSLZ N −0.15±0.02 −0.66±0.10 0.37±0.08 0.26±0.13 −1.45±0.26 1.50±0.42 E 39.73±0.02 39.41±0.08 0.31±0.08 0.35±0.13 1.06±0.07 1.02±0.09 U −2.66±0.02 −2.62±0.24 1.12±0.12 1.07±0.38 0.49±0.03 0.40±0.14 GSML N −2.99±0.01 −2.85±0.08 0.79±0.03 0.86±0.11 1.22±0.02 1.23±0.06 E 32.80±0.01 32.80±0.07 0.35±0.01 0.37±0.02 −1.02±0.10 −0.93±0.29 U −0.14±0.02 −0.18±0.29 0.76±0.03 0.78±0.17 −1.15±0.12 −1.18±0.52 GSTS N −7.99±0.02 −8.19±0.13 0.52±0.09 0.37±0.21 1.12±0.06 0.95±0.10 E 34.65±0.01 34.43±0.11 1.30±0.07 1.24±0.19 1.05±0.01 0.99±0.03 U −0.71±0.09 −0.15±0.72 1.69±0.36 1.47±1.01 1.42±0.16 1.37±0.46 表 3 ITRF14框架下甘肃省境内CMONOC站的水平速度估值和中误差统计表
(mm·a−1) 精度指标 VE VN δE δN 最大值 40.80 0.64 0.39 0.24 最小值 30.37 −9.11 0.05 0.05 平均值 34.20 −4.85 0.10 0.10 表 4 欧亚框架下甘肃省境内CMONOC站的水平速度估值和中误差统计表
(mm·a−1) 精度指标 VE VN δE δN 最大值 12.87 5.73 0.39 0.24 最小值 2.20 −1.94 0.05 0.05 平均值 6.37 1.21 0.10 0.10 -
[1] ZHANG J, BOCK Y, JOHNSON H, et al. Southern california permanent GPS geodetic array: error analysis of daily position estimates and site velocities[J]. Journal of geophysical research atmospheres, 1997, 102(B8): 18035-18056. DOI: 10.1029/97JB01380. [2] LANGBEIN J. Noise in GPS displacement measurement from southern california and southern nevada[J]. Journal of geophysical research atmospheres, 2008, 113(B5): 1-12. DOI: 10.1029/2007JB005247. [3] 黄立人. GPS基准站坐标分量时间序列的噪声特性分析[J]. 大地测量与地球动力学, 2006, 26(2): 31-33, 38. [4] 蒋志浩, 张鹏, 秘金钟, 等. 顾及有色噪声影响的CGCS2000下我国CORS站速度估计[J]. 测绘学报, 2010, 39(4): 355-363. [5] 李昭, 姜卫平, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列噪声模型建立与分析[J]. 测绘学报, 2012, 41(4): 496-503. [6] 陈晨, 魏冠军, 高志钰, 等. 香港CORS站坐标时间序列分析研究[J]. 全球定位系统, 2019, 44(2): 89-97. [7] ZHAO B, HUANG Y, ZHANG C, et al. Crustal deformation on the chinese mainland during 1998-2004 based on GPS data[J]. Geodesy and geodynamics, 2015, 6(1): 7-15. DOI: 10.1016/j.geog.2014.12.006. [8] ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of geophysical research: solid earth, 2017, 122(13): 9290-9312. DOI: 10.1002/2017JB014465. [9] WANG M, SHEN Z-K. Present-day crustal deformation of continental china derived from GPS and its tectonic implications[J]. Journal of geophysical research: solid earth, 2020: 125. DOI: 10.1029/2019JB018774. [10] 曾波, 张彦芬, 姜卫平, 等. 山西CORS网基准站速度场分析[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1401-1404. [11] 袁鹏, 孙宏飞, 秦昌威, 等. 安徽CORS参考站三维速度场分析[J]. 武汉大学学报(信息科学版), 2016, 41(4): 535-540. [12] 徐杰, 孟黎, 国兆新. 山东地壳运动速度场模型建立与分析[J]. 测绘科学, 2017, 42(7): 70-75. [13] WILLIAMS S D P. CATS: GPS coordinate time series analysis software[J]. GPS solutions, 2008, 12(2): 147-153. DOI: 10.1007/s10291-007-0086-4. [14] HERRING T A, FLOYD M A, KING R W, et al. Global Kalamn filter VLBI and GPS analysis program Release 10.6[M/OL]. 2015. [2020-08-12]. http://geoweb.mit.edu/gg/GLOBK_Ref.pdf. [15] 杨登科, 安向东, 黄广利, 等. 不同GPS时间序列跨度对噪声模型建立的影响[J]. 测绘科学, 2016, 41(5): 33-37. [16] MAO A, CHRISTOPHER G A, HARRISON C, et al. Noise in GPS coordinate time series[J]. Journal of geophysical research: solid earth, 1999, 104(B2): 2797-2816. DOI: 10.1029/1998JB900033. [17] LANGBEIN J. Noise in two-color electronic distance meter measurements revisited[J]. Journal of geophysical research: atmosphere, 2004, 109(B4): 1-16. DOI: 10.1029/2003JB002819. [18] WESSEL P, LUIS J, UIEDA L, et al. The generic mapping tools version 6[J]. Geochemistry geophysics, geosystems, 2019, 20(11): 5556-5564. DOI: 10.1029/2019GC008515.