Preliminary analysis of atmospheric water vapor detection performance based on BDS-3
-
摘要: 对我国刚布署完成的北斗三号卫星导航系统(BDS-3)的大气水汽探测性能作初步分析可更好地发挥BDS-3的气象探测潜能. 采用全球不同位置的台站进行几种手段的对比,探测结果具有代表性和说服力. 研究结果表明:将BDS-3/PWV(大气可降水量)与GPS/PWV对比,平均偏差(BIAS)优于1.0 mm,均方根误差(RMSE)优于2.0 mm,相关系数均在94%以上;BDS-3/PWV与GPS/PWV求差取绝对值后的平均值(MEAN)为1.1 mm,比北斗二号(BDS-2)降低了71%;BDS-3/PWV与GPS/PWV的RMSE为1.4 mm,比BDS-2降低了63%. 将BDS-3/PWV与ERA5/PWV对比, BIAS优于2.9 mm,RMSE优于2.8 mm,相关系数均在92%以上,BDS-3/PWV与ERA5/PWV的MEAN为2.1 mm,比BDS-2降低了48%;BDS-3/PWV与ERA5/PWV的RMSE为1.6 mm,比BDS-2降低了57%. BDS-3探测水汽性能明显优于BDS-2;BDS-3水汽探测结果与GPS、ERA5再分析资料有很好的一致性.
-
关键词:
- 北斗三号(BDS-3) /
- GPS /
- ERA5 /
- 大气可降水量(PWV) /
- 水汽探测
Abstract: The preliminary analysis of the atmospheric water vapor detection performance of Beidou-3 global satellite navigation system (BDS-3), which has just been deployed in China, can make better use of the meteorological detection potential of BDS-3. In this paper several methods are compared using data from diffent stations around the world. The results are representative and convincing. The results of the study showed, comparing BDS-3/PWV with GPS/PWV, the average deviation (BIAS) was preferable to 1.0 mm, the root mean square error (RMSE) was better than 2.0 mm, and the correlation coefficients were all above 94%; The mean of the absolute values of the difference between of BDS-3/PWV and GPS/PWV (MEAN) was 1.1 mm, which was 71% lower than BDS-2; The RMSE of BDS-3/PWV and GPS/PWV was 1.4 mm, which was 63% lower than BDS-2. Comparing BDS-3/PWV with ERA5/PWV, BIAS was preferable to 2.9 mm, RMSE was better than 2.8 mm, and the correlation coefficient was above 92%. The MEAN of BDS-3/PWV and ERA5/PWV was 2.1 mm, which was better than BDS-2 reduced by 48%; The RMSE of BDS-3/PWV and ERA5/PWV was 1.6 mm, which was 57% lower than BDS-2. The water vapor detection performance of BDS-3 was much better than BDS-2, which was in good agreement with GPS and ERA5 water vapor detection results.-
Key words:
- BDS-3 /
- GPS /
- ERA5 /
- precipitable water vapor /
- water vapor detection
-
表 1 MGEX站相关信息
MGEX站 观测值类型 同一时刻BDS-2、BDS-3至少可视卫星数 CEBR C1P L1P C5P L5P C2I L2I C7I L7I C6I L6I 5、6 CUSV C2I L2I C6I L6I C7I L7I 13、7 GANP C5X L5X C2I C7I L2I L7I L6I C6I 8、8 IISC C2I L2I C6I L6I C7I L7I 11、5 KIR8 C5X L5X C2I C7I L2I L7I L6I C6I 9、10 MAR7 C5X L5X C2I C7I L2I L7I L6I C6I 6、8 MAS1 C1P L1P C5P L5P C2I L2I C7I L7I C6I L6I 4、6 TONG C2I L2I C6I L6I C7I L7I 5、7 VILL C1P L1P C5P L5P C2I L2I C7I L7I C6I L6I 6、6 YEL2 C2I L2I C6I L6I C7I L7I 4、8 表 2 数据解算策略
控制选项 控制参数 轨道处理策略 BASELINE 观测值使用 LC_AUTCLN 分析类型(迭代) 1-ITER 天顶延迟参数 25 高度截止角 10° 海潮模型 otl_FES2004.grid 对流层误差模型 Saastamoninen 映射函数模型 GMF 精密星历 WUM 其 他 default 表 3 ERA5大气资料说明
参数 取值 数据类型 格网模型 水平覆盖率 全球 水平分辨率 0.25°$ \times $0.25° 时间覆盖率 1979—至今 时间分辨率 每小时 文件格式 GRIB/NetCDF 更新频率 每天 表 4 BDS-3/PWV与GPS/PWV的BIAS、RMSE、r统计
MGEX站 BIAS/mm RMSE/mm r/% CEBR −0.80 1.18 98.99 CUSV 0.10 1.93 96.49 GANP 0.11 0.73 98.87 IISC −0.28 1.80 94.28 KIR8 −0.12 0.65 99.25 MAR7 −0.26 0.97 98.38 MAS1 −0.38 1.21 94.31 TONG −0.79 3.69 96.90 VILL −0.56 1.20 98.44 YEL2 0.06 0.87 95.41 表 5 BDS-2/PWV与GPS/PWV的BIAS、RMSE、r统计
MGEX站 BIAS/mm RMSE/mm r/% CEBR −1.65 6.17 44.42 CUSV −0.42 2.85 92.30 GANP 0.97 2.37 88.79 IISC 1.38 2.48 90.01 KIR8 0.07 2.77 87.86 MAR7 −0.04 2.31 87.96 MAS1 0.76 3.73 57.10 TONG 4.57 7.02 15.71 VILL 2.59 6.22 54.95 YEL2 1.16 2.83 76.89 表 6 BDS-3/PWV、BDS-2/PWV分别与GPS/PWV的MEAN和RMSE统计
MGEX站 BDS-2/PWV BDS-3/PWV MEAN/mm RMSE/mm MEAN/mm RMSE/mm CEBR 5.31 6.17 0.96 1.18 CUSV 2.13 2.85 1.41 1.93 GANP 1.83 2.37 0.53 0.73 IISC 1.94 2.48 1.30 1.80 KIR8 2.02 2.77 0.49 0.65 MAR7 2.06 2.31 0.69 0.97 MAS1 3.14 3.73 0.92 1.21 TONG 11.84 7.02 2.78 3.69 VILL 4.78 6.22 1.00 1.20 YEL2 1.96 2.83 0.66 0.87 ALL 3.70 3.90 1.10 1.40 表 7 BDS-3/PWV、BDS-2/PWV分别与ERA5/PWV的MEAN、RMSE和r统计
MGEX站 对比方式 样本量 MEAN/mm RMSE/mm r/% CEBR BDS-3与ERA5 571 2.39 2.84 96 BDS-2与ERA5 530 4.86 5.54 54 CUSV BDS-3与ERA5 383 2.36 1.66 98 BDS-2与ERA5 418 3.98 2.64 91 GANP BDS-3与ERA5 550 2.93 2.64 92 BDS-2与ERA5 543 4.22 3.58 75 IISC BDS-3与ERA5 566 1.66 1.46 94 BDS-2与ERA5 297 3.47 2.00 99 KIR8 BDS-3与ERA5 581 2.58 1.66 93 BDS-2与ERA5 527 4.11 2.99 56 MAR7 BDS-3与ERA5 587 2.16 1.55 93 BDS-2与ERA5 592 3.97 2.61 76 MAS1 BDS-3与ERA5 574 1.45 1.39 92 BDS-2与ERA5 488 3.99 2.96 63 TONG BDS-3与ERA5 361 2.06 1.70 97 BDS-2与ERA5 238 4.40 7.12 40 VILL BDS-3与ERA5 423 2.81 1.87 98 BDS-2与ERA5 458 4.58 4.90 66 YEL2 BDS-3与ERA5 622 1.73 1.31 92 BDS-2与ERA5 593 3.16 1.61 63 ALL BDS-3_ALL 2.10 1.60 BDS-2_ALL 4.00 3.70 -
[1] DAI A G, WANG J H, WARE R H, et al. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity[J]. Journal of geophysical research atmospheres, 2002, 107(D10): ACL-11. DOI: 10.1029/2001JD000642. [2] 徐祥德, 陶诗言, 王继志, 等. 青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002(3): 257-266. [3] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of geophysical research atmospheres, 1992, 97(D14): 15787-15807. DOI: 10.1029/92JD01517. [4] ROCKEN C, WARE R, VAN HOVE T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical research letters, 1993, 20(23): 2631-2634. DOI: 10.1029/93GL02935. [5] BRAUN O, ROCKEN C, WARE R. Validation of line-of-sight water vapor measurements with GPS[J]. Radio science, 2001, 36(3): 459-472. DOI: 10.1029/2000RS002353. [6] RAJA M K R V, GUTMAN S I, MCMILLIN J G, et al. The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based gps receivers over the contiguous united states[J]. Journal of atmospheric and oceanic technology, 2008, 25(3): 416-428. DOI: 10.1175/2007JTECHA889.1. [7] LEE S W, KOUBA J, SCHUTZ B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of geodesy, 2013, 87(10): 923-934. DOI: 10.1007/s00190-013-0655-y. [8] 施闯, 王海深, 曹云昌, 等. 基于北斗卫星的水汽探测性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 285-289. [9] EMARDSON T R, ELGERED G, JOHANSSON J M. Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers[J]. Journal of geophysical research, 1998, 103(D2): 1807-1820. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD03015. [10] BOCK O, FLAMANT C, RICHARD E, et al. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP[J]. Quarterly journal of the royal meteorological society, 2005, 131(612): 3013-3036. DOI: 10.1256/qj.05.27. [11] 高为广, 苏牡丹, 李军正, 等. 北斗卫星导航系统试运行服务性能评估[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1352-1355. [12] 张强, 赵齐乐, 章红平, 等. 北斗卫星导航系统Klobucha模型精度评估[J]. 武汉大学学报(信息科学版), 2014, 39(2): 142-146. [13] 肖乐杰, 孙付平, 李亚萍, 等. IGSO/GEO卫星对北斗系统导航性能的贡献分析[J]. 全球定位系统, 2016, 41(3): 16-20. [14] 马下平, 鲁尚强, 李秦政, 等. 北斗卫星导航系统的空间信号精度评估[J]. 测绘科学, 2019, 44(1): 90-97. [15] 王敬平, 姜鑫, 褚少鹤, 等. 北斗卫星导航系统定位精度研究[J]. 软件, 2019, 40(10): 152-154. DOI: 10.3969/j.issn.1003-6970.2019.10.034 [16] 魏钢, 高皓, 项宇. 北斗二号与北斗三号定位精度对比分析[J]. 导航定位学报, 2020, 8(2): 8-11. DOI: 10.3969/j.issn.2095-4999.2020.02.002 [17] HÉROUX P , KOUBA J. GPS precise point positioning using IGS orbit products[J]. Physics and chemismistry of the earth, part A: solid earth and geodesy, 2001, 26 (6-8): 573-578. DOI: 10.1016/S1464-1895(01)00103-X. [18] SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bullet in geodesique, 1972, 105(1): 279-298. DOI: 10.1007/BF02521844. [19] HOPFIELD H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J]. Radio science, 1971, 6(3): 357-367. DOI: 10.1029/RS006i003p00357. [20] Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate[DS/OL]. [2020-06-07]. Copernicus Climate Change Service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home. [21] 吴仁攀, 曾琪, 虞顺. BDS-3数据质量评估及定位性能分析[C]//第十届中国卫星导航年会论文集-SOS空间基准与精密定位. 中科北斗汇(北京)科技有限公司会议论文集, 2019: 1-5. [22] 程军龙, 王旺, 马立烨, 等. 北斗三号观测数据质量及定位精度初步评估[J]. 测绘通报, 2019(8): 1-7.