摘要:
马尔可夫跳变系统(MJSs)是实际应用中一种极其重要的混合随机系统,本文研究了MJSs的采样控制问题.根据一种连续的MJSs模型和Lyapunov-Krasovskii稳定性定理,通过引入两个可调参数,首先把整个采样区间分段成了四个部分,基于四个采样区间提出了相应的两个状态空间表达式,利用这两个状态空间表达式,构建了一种能够充分利用四个分段区间状态信息的新颖Lyapunov-Krasovskii泛函,再利用积分不等式方法去估计泛函导数,从而获得采样控制MJSs的全新稳定性判据.最后,给出了一个非线性质量弹簧阻尼器系统例子和一个实际的船舶定位系统例子,经过建立仿真,所得到的采样区间最大值远远大于相似文献的结果,表明了本文方法的优越性.