

中国科学引文数据库(CSCD)
 中文科技期刊数据库
 中国核心期刊(遴选)数据库
 日本科学技术振兴机构数据库(JST)

・中国学术期刊(网络版)(CNKI) ・中国学术期刊综合评价数据库(CAJCED) ・中国建星期刊城出版平台

罗兰-C小型有源接收天线设计与仿真

刘 杨,齐俊东,陈奇东,黄 晓,徐文璞,刘 睿

The design and simulation of a small active Loran-C receiving antenna

LIU Yang, QI Jundong, CHEN Qidong, HUANG Xiao, XU Wenpu, and LIU Rui

引用本文:

刘杨, 齐俊东, 陈奇东, 等. 罗兰-C小型有源接收天线设计与仿真[J]. 全球定位系统, 2022, 47(5): 118-126. DOI: 10.12265/j.gnss.2022147 LIU Yang, QI Jundong, CHEN Qidong, et al. The design and simulation of a small active Loran-C receiving antenna[J]. Gnss World of China, 2022, 47(5): 118-126. DOI: 10.12265/j.gnss.2022147

在线阅读 View online: https://doi.org/10.12265/j.gnss.2022147

您可能感兴趣的其他文章

Articles you may be interested in

一种新型罗兰导航系统差分技术

A new differential loran navigation system

全球定位系统. 2019, 44(4): 68-76

eLoran系统新型数据调制 / 信道编码方案设计与评估

Design and evaluation of a new data modulation and channel coding scheme for eLoran system 全球定位系统. 2020, 45(5): 84–89

GNSS接收机天线相位中心变化相对检测方法

A Study on Antenna Relative Phase Center Variation 全球定位系统. 2017, 42(1): 16-21

eLoran系统新型信号波形设计及其性能评估

Design and performance evaluation of new signal waveform in eLoran system 全球定位系统. 2020, 45(2): 13-20

GNSS调零抗干扰天线的反欺骗性能分析

Analysis of anti-spoofing performance of GNSS nulling anti-jamming antenna 全球定位系统. 2021, 46(6): 30-36

基于双天线测向的航向对准数据处理方法研究

Study on Data Processing Method of Course Alignment Based on Dual Antenna Direction Finding 全球定位系统. 2017, 42(6): 84–87

关注微信公众号,获得更多资讯信息

DOI: 10.12265/j.gnss.2022147

罗兰-C小型有源接收天线设计与仿真

刘杨1,齐俊东2,陈奇东1,黄晓1,徐文璞1,刘睿1

(1.中国电波传播研究所,青岛 266107;2.装发军代局驻郑州地区军代室,郑州 450000)

摘 要:针对罗兰-C无线电导航信号接收需求,研究一种高性能的罗兰-C小型有源接收天线,可以减小天线体积和安装难度,方便罗兰-C导航接收机的使用,具有较高的实用意义.天线主体采用磁棒线圈天线接收长波频段罗兰-C信号,在天线内设计了包含放大电路、带通滤波电路、差分输出电路和供电电路在内的前端信号调理电路,从而增大信号灵敏度,提高信噪比;设计了一体化的天线结构,以便工程化应用.通过仿真和实测结果表明:该天线在工作频带内,可以全向高效接收罗兰-C信号,而且对接收到的微弱罗兰-C信号进行放大并滤除带外噪声,信号强度和信噪比满足使用要求.该天线具有体积小、灵敏度高、使用方便的特点,可应用于罗兰-C无线电导航,组合导航、附加二次相位时延计算等场景.

关键词: 罗兰-C;有源接收天线;磁天线;差分放大电路;滤波电路 中图分类号:P228.4;TN827+.2 文献标志码: A 文章编号:1008-9268(2022)05-0118-09

0 引 言

GPS 是目前应用最广泛的导航定位手段,具有 全球性、全天候、精度高、实时定位的特点,但其在应 用中仍存在一些缺陷,如 GPS 易于受到非故意的人 为干扰 (如射频信号干扰)和自然干扰 (如太阳磁 暴);也易于受到故意的干扰 (如信道阻塞)和人为攻 击^[1-4].与之相比,罗兰-C 是一种远程陆基无线电导航 系统,发射 100 kHz 频率的脉冲相位调制无线电导航 信号,利用主/副台结合实现双曲线定位,具有覆盖范 围广、抗干扰能力强、信号稳定、定位精度重复性好 等特点.由于罗兰-C 导航系统可以有效弥补 GPS 的 不足^[5-8],因此,罗兰-C 导航接收机目前受到越来越 多的重视,在导航授时、组合导航、附加二次相位时 延计算等场景中取得了较为广泛的应用.

天线是接收无线电信号的窗口,是罗兰-C导航 接收机最重要的组成部分之一.与电天线相比,磁天 线具有体积小、灵敏度高、抗干扰能力强的特点^[9].国 内外有很多研究人员对罗兰-C接收磁天线进行了研 究,如文献 [10-11] 中均针对罗兰-C有源接收磁天线 进行了设计;文献 [12] 中对罗兰-C磁天线的性能进 行了研究,并将其性能与电天线进行了比较;文献

收稿日期:2022-08-16 通信作者:刘杨 E-mail: leo123yang@163.com [13] 中对包含磁天线在内的的各种电小天线设计方 法与理论进行了综合性的探讨. 但是, 目前的研究主 要停留在理论计算, 较少对罗兰-C 天线进行结构设 计、电路设计, 及对天线性能进行仿真的研究和工程 应用. 因此, 本文研究并设计一种高性能的罗兰-C 小 型有源接收天线, 通过对天线的结构及其内部有源滤 波放大电路进行详细设计、仿真, 可以推动本天线的 工程化应用, 具有较高的实用意义, 方便天线在罗兰-C 导航接收机的使用.

1 天线设计

通过综合分析,采用磁棒天线作为罗兰-C接收 天线,通过对天线结构进行整体设计布局,进行接收 天线的小型化和一体化实现.

1.1 罗兰-C 接收天线

罗兰-C信号属于长波 (LF)频段,波长较长,必 须使用专用的长波天线进行接收.磁棒天线由于具备 体积小、增益高,不易产生静电荷累积等优点,是一 种较为合适的长波接收天线.磁棒天线可以看作是一 个中间插入高磁导率磁棒的小环天线,一般由漆包线 等组成线圈,绕制在磁芯上构成.通过加入能够改善 对于磁力线约束能力的磁芯,可以得到更大的感应电 势,提高天线灵敏度.磁棒天线基本构成如图1所示.

图1 磁棒天线组成示意图

磁棒天线的等效高度H。为

$$H_e = \frac{2\pi \,\omega S}{\lambda} \mu_e. \tag{1}$$

式中: S为圆柱磁芯横截面积; ω 为天线线圈的匝数; λ 为信号波长. μ_e 为所使用的磁芯的磁导率, 且 μ_e 满足¹⁴

$$\mu_e = \frac{\mu_0}{1 + 0.84 \left(\frac{d}{l}\right)^{1.7} (\mu_0 - 1)}.$$
(2)

式中: d为圆柱磁芯直径; l为圆柱磁芯长度; µ₀为磁 芯所使用材料的初始磁导率. 通过上述分析可知, 磁 棒天线对信号的接收能力主要与磁芯长度、绕线匝 数、磁芯截面积和磁芯的磁导率有关, 天线感应电压 与磁芯截面积成正比, 与绕线匝数成正比, 与磁导率 成正比. 因此, 理论上说, 需选用初始磁导率大的磁 芯, 增大磁芯体积, 同时尽量增大线圈的匝数.

但是,无法通过无限增大磁芯长度、截面积以及 线圈的匝数以获得更高增益.首先,磁芯长径比的增 加对接收性能的优化是有限度的.通过 MATLAB 仿 真可得,具有不同的初始磁导率的铁氧体的长径比与 μ_e的关系如图 2 所示.

图 2 铁氧体的长径比与磁导率的关系

由图 2 可知,对于磁棒天线常用的 1 000~2 000 初始磁导率的磁芯来说,在长径比 10~40 时,磁导率 随长径比增加而增大明显,其后继续增大长径比,则 磁导率增加率逐渐降低^[15].因此,长径比不宜大于 40,可根据天线尺寸需要自由选取 10~40 以内区间为 宜.其次,增大磁芯的长度和截面积,其铁氧体内部损 耗会增大,使天线的灵敏度降低.同时,过长过大的磁 棒天线加工难度增加,机械强度也大幅降低,尤其不 符合天线小型化的要求.

线圈匝数也不能无限增加. 增多的线圈匝数会导 致线圈内阻增大, 使系统热噪声增加, 进一步降低天 线接收信号的信噪比. 同时, 线圈匝数的变化会改变 天线电感值, 进而影响天线的谐振频率. 对于接收 100 kHz 信号的长波磁天线, 可以依据下表总结出的 典型数据, 对线圈匝数进行设计^[16].

磁棒天线设计思路如下:根据线圈电感需要,使 用初始磁导率为1000的锰锌铁氧体磁棒作为磁芯; 根据小型化要求,先确定磁芯长度140mm;按照长 径比为10计算,取横截面直径为14mm;采用0.5mm 的漆包线对线圈进行绕制,采用中心密绕的缠绕方 式,根据表1中长波接收天线最优匝数参考值,设计 线圈匝数为80圈.所设计的磁棒天线具有方向性,其 方向图在水平界面上呈"∞"形状.对所设计的磁棒天 线进行建模,天线外观如图3所示.

	建图日	日成	是付	2 田 粉	
磁芯直径/mm	ジョー		取几匹奴		
	中波	长波	中波	长波	
8	0.2~0.3	1~1.5	60~80	100~150	
10	0.2~0.3	1~1.5	35~50	80~120	
15	0.2~0.3	1~1.5	20~25	60~80	

1.2 天线结构整体设计布局

结构设计也是天线小型化、一体化设计中的重 点.首先,天线结构提供了对正交布置的磁棒罗兰- C 接收天线和相应前端信号调理电路进行安装的位置;其次,天线结构提供了系统的供电输入和信号输出接口以及天线安装接口;最后,天线结构中包括天线罩,具备使天线在室外应用过程中能够防水防潮、防风沙日晒的能力.天线结构设计中应注意如下几点:1)天线整体应尽可能满足小型化要求,同时结构坚固美观;2)由于单个磁棒天线具有方向性,天线结构中应考虑采用两个磁棒正交布置的方案;3)天线罩所采用的材料应具备较好的透波性能,防止对信号的接收产生干涉.

利用三维 (3D) 建模结构设计软件 Creo5.0 对天 线结构进行整体设计布局, 如图 4 所示.

图 4 3D 建模结构设计

图 4 中, A 为天线罩, B 为正交磁棒安装座, C 为 天线底盘, D 为底座, E 为磁棒天线, F 为前端信号调 理电路板, G 为 Lemo.1B 型连接器, H 为防水透气阀. 其中, 天线罩采用流线形设计, 具有防风沙、不会积 聚雨雪水的特点, 天线罩由 4 个固定螺丝从下方安装 在天线底盘上, 连接紧密, 防水性能好; 天线底盘上 设电路板等部件的安装螺丝孔, 侧下方设置信号和供 电线缆连接插座孔和防水透气阀安装孔, 底部设计通 用 5/8 英寸螺纹孔可供安装底座.

正交磁棒安装座是一体化天线的重要结构组成 部分,下文着重对其设计方案进行描述.正交磁棒安 装座可以使多根磁棒进行组合收信,从而可以解决磁 棒天线对于信号的接收具有方向性、难以通过一根 磁棒接收所有方向上罗兰-C发射台发射的信号的问 题.正交磁棒安装座可以采用两种布置形式:一种是 两根磁棒呈"十"字形布置,另一种是四根磁棒呈"口" 字形布置.四根磁棒呈"口"字形布置时,信号接收的 强度更大,但其结构复杂,且需设置专门的加法器电 路对平行方向的磁棒信号进行合成,因此本文中采用 "十"字形布置方案,通过前端信号调理电路中设置放 大电路,可使信号强度大小满足使用要求.安装座上 下面各开一槽放置磁棒天线,槽外可通过螺丝连接紧 固片防止天线掉落.下面板除开槽方向与上面板垂直 外,其他结构相同.正交磁棒安装座 3D 结构和透视 线框图如图 5 所示.

图 5 磁棒安装座 3D 结构图

天线罩、正交磁棒安装座、天线底盘均采用玻璃 纤维尼龙材料制作,除保留了普通尼龙材料加工精度 好、耐高低温、尺寸稳定性高的特点外,由于其中加 入了玻璃纤维材料,其韧性、强度也远高于普通尼龙 材料.其在罗兰-C导航频段内的透波率满足要求,不 会对信号的接收产生影响.最终设计的一体化天线呈 扁圆锥形,高度为110 mm(不含底座),半径为80 mm, 通过一个接口进行供电和信号输出,满足小型化和一 体化要求.

2 前端信号调理电路设计

前端信号调理电路主要针对罗兰-C接收天线, 进行放大电路、滤波电路、差分输出电路和供电电路 的设计,从而提高天线灵敏度、滤除带外噪声干扰, 增大信号信噪比.

2.1 放大电路设计

由于罗兰-C系统发射信号中心频率为100 kHz, 其波长λ为3km, 远远大于磁棒天线的等效高度, 磁 棒天线感应效率较低,感应出的电压强度一般为毫伏 甚至微伏级别 因此,需要设计放大电路,对天线感应 到的电压值进行放大,以便其能被后端的 A/D 模数 转换电路进行识别. 本文中考虑使用高速仪表运算放 大器 AD8421 搭建放大电路. AD8421 是一款低成 本、低功耗、极低噪声、超低偏置电流的仪表放大器, 特别适合各种信号调理和数据采集应用. AD8421 的 带宽为 10 MHz, 压摆率为 35 V/µs, 0.001%(增益 G= 10) 建立时间为 0.6 µs, 大大满足对于 100 kHz 频率 信号的采集需求. AD8421 的输入电压噪声为3.2 nV/ √Hz, 电流噪声为200fA/√Hz, 性能优异, 具有极高 的共模抑制比 (CMRR), 可以在宽温度范围内提取淹 没在高频共模噪声中的低电平信号. AD8421 使用简 单,通过单个电阻即可实现对于增益的调节,即便在 高增益的情况下,电流反馈架构也能保证对信号的高 性能放大.图6为本文设计的放大电路原理图.

图 6 中, IN_X端口为信号输入端口, D1 和 D2 为低漏流的肖特基二极管, 用于防止输入信号过大, 损坏前端放大电路. C1 为磁棒天线的谐振调节电容. C1 的值可由下式确定:

$$C1 \approx C = \frac{1}{\left(2\pi f\right)^2 L}.$$
(3)

式中: f 为谐振频率, f = 100 kHz; L 为磁棒的等效电 感值,可以取L = 1 mH, 计算可得 C=2.53 nF.由于工 程应用中,无该精密度的电容可以使用,因此选取电 容值最相近的 5% 精密度电容,选取 C1 = 2.2 nF. C2 与 R2 组成一阶无源高通滤波器,防止 50 Hz 工频 干扰进入电路,同时 C2 可以起到隔直作用, R2 可以 提供输入偏置电流的对地返回路径. U1 为 AD8421 仪表放大器芯片,采用±5 V 供电, AMP_X 为放大信 号输出管脚.

上述电路的增益可由下式计算:

$$G = 20\log\left(\frac{9.9 \text{ k}\Omega}{R_1} + 1\right).$$
(4)

因此,当 *R*1=100 Ω 时,该电路的增益为 40 dB. 当磁棒天线接收到的信号强度为 10 时,经该放大电 路放大后的信号强度为 0.1 mV.采用 14 位 AD 转换 时,所能采集的最小电压为 0.06 mV,该放大倍数已 经能满足使用要求.

2.2 滤波电路设计

罗兰-C信号中心频率为 100 kHz,频带宽度 为±10 kHz.为了抑制信号频带以外的干扰和噪声,提 高有用信号的信噪比,需要在放大电路后串联带通滤 波电路.考虑到尽可能抑制带外噪声,希望滤波器通 带尽量窄,过渡带尽量陡峭,滤波器阶数要高,同时 滤波器自身噪声要小,本文中设计了有源带通滤波电 路,采用运算放大器构建 8 阶带通滤波电路.运算放 大器采用 ADA4841-2.

高阶滤波器可以由多个基本形式的 2 阶滤波器 组合构成.基本的 2 阶滤波器有两种拓扑结构: SallenKey 型和多重反馈型 (Multiple-Feedback).

Sallen-Key 型是应用最广泛的滤波器结构. 它的 特点是具有高输入阻抗、电路增益容易被匹配、在输 出增益小时噪声增益较低. 与之相比, 多重反馈型滤 波器需要的元器件数更多, 带来的优点是对元器件值 不匹配的敏感度较低、在高频端的衰减特性要好, 且 大信号输入时失真要小. 不过, 多重反馈型滤波器的 噪声增益更大, 且其中的电容在高频下容抗变低, 运 放需承担的负载更大. 考虑到本应用中不需要对高衰 减特性和大信号失真做特殊优化, 且需要滤波器噪声 尽量小, 因此比较适合选择 4 个 2 阶单位增益 Sallen-Key 型滤波器搭建 8 阶滤波器. 以低通滤波器为例, 如图 7 所示, 为单位增益的 Sallen-Key 型滤波器的基 本结构.

图 7 Sallen-Key 型滤波器的结构图

对于高通滤波器和带通滤波器,仅需改变电路中的某些电阻、电容位置和顺序即可.

按通带滤波特性的频率响应曲线分类,有源滤波 器可分为巴特沃斯型、切比雪夫型、贝塞尔型等滤波 器.其中,巴特沃斯型滤波器的通带内最平坦,但是在 阻带内的衰减速率不是很快;切比雪夫型滤波器的阻 带衰减快,但是通带内有波纹;贝塞尔型滤波器的相 频特性最好,但是幅频特性衰减过早,下降坡度最差. 综合考虑对滤波器通带内平坦度和阻带衰减速率的 要求,本文中选择采用巴特沃斯型滤波器,使信号的 失真尽可能小,同时兼顾了对带外信号的抑制能力.

在对带通滤波电路进行总体设计时,可以选择两种拓扑形式:一是直接设计带通滤波器;二是采用高 通滤波器和低通滤波器串联的形式实现带通滤波.直 接设计带通滤波器时,实现相同阶数的滤波器所需要 的运放个数更少,但每级滤波电路的品质因数(Q)值 增大,尤其是针对罗兰-C信号需要的通带较窄的带 通滤波电路,会对运算放大器的单位增益带宽积 (GBW)提出很高要求.对此,利用 TI 公司的 FilterPro滤波器设计仿真软件进行仿真.设计符合需求 的 8 阶巴特沃斯型带通滤波器,其给出的理论设计方 案和每级滤波器参数如图 8 和表 2 所示.

表 2 各级滤波器参数

滤波器级数	通带增益	中心频率/kHz	Q	最小GBW需求/MHz
1	1	96.230 4	5.416	52.118 4
2	1	103.917 2	5.416	56.281 6
3	1	91.180 8	13.121	119.638 3
4	1	109.672 2	13.121	143.900 9

由结果可见,后两级 2 阶带通滤波器 Q 值较高, 其需求的最小 GBW 带宽已经大于 ADA4841 运放 80 MHz 的 GBW 指标.因此,本文考虑使用高通滤波 器和低通滤波器串联实现带通.其中,高通滤波器-3 dB 截止带宽为 90 kHz,低通滤波器-3 dB 截止带宽 为 110 kHz.图 9 为最终设计的带通滤波电路原理图.

图 9 带通滤波器电路原理图

利用所设计的滤波器参数进行仿真,每级滤波器 参数如表 3~4 所示.

化了 问应心双面多效	表 3	高通滤波器参数
------------	-----	---------

滤波器级数	通带增益	截止频率/kHz	Q	最小GBW需求/MHz
1	1	90	0.51	4.59
2	1	90	0.60	5.40
3	1	90	0.90	8.10
4	1	90	2.56	23.04

表 4	任诵滤波器参数
12.4	瓜迪応双皕罗奴

滤波器级数	通带增益	截止频率/kHz	Q	最小GBW需求/MHz
1	1	110	0.51	5.61
2	1	110	0.60	6.60
3	1	110	0.90	9.90
4	1	110	2.56	28.16

可见,通过高通滤波器和低通滤波器串联的方法,可以在滤波性能不变的情况下,极大的减小每级 *Q*值和 GBW 需求.

2.3 差分电路设计

经过放大滤波后的信号即可输出给接收机使用. 然而,天线通过馈线进行长距离传输,可能会引入共 模噪声,造成信号的信噪比降低或产生失真.因此,在 滤波电路后设计差分电路,将单端信号转为差分信号 输出,可以有效地提升天线输出信号质量.差分输出 芯片选用 AD8139,图 10 为电路图.

2.4 供电电路设计

由天线内部电路设计结果可知, 天线前端电路共 需采用±5 V 两路电压供电, 其中+5 V 可以通过供电 接口直接输入得到, -5 V 需要通过电压转换得到. 设 计电压转换电路, 为尽量降低供电电压的纹波, 防止 供电噪声对电路造成影响, 采用电荷泵芯片 LTC1983 变为-5 V, 对前端电路负电压供电. 电荷泵可以利用 电容作为储能器件, 实现正电压降伏电压的转变, 其 纹波小, 效率高, 电路简单体积小. 所使用的 LTC1983 芯片可输出 100 mA 电流, 纹波仅为 60 mVpp. 图 11 为电压转换电路图.

3 仿真与实测结果

3.1 天线仿真

利用 HFSS 电磁仿真软件对单根磁天线进行仿 真,图 12 为得出的天线 3D 方向图和 θ 平面方向图.

图 12 天线方向图

由此可见, 磁天线可以对信号进行接收, 天线具 有方向性, 单个磁天线方向图呈"∞"形状, 通过两个 磁天线正交布置, 可以对罗兰-C 信号进行全向接收. 3.2 电路仿真

3.2.1 电路放大性能仿真

利用 Multisim 电路仿真软件对电路的放大性能 进行仿真,如图 13 所示.设置的仿真条件为:信号频 率 100 kHz, 信号幅度 0.1 Vpp. 观察差分放大输出 信号, 其频率不变, 为 100 kHz, 每个差分信号幅度 1 Vpp.

由仿真结果可见, 在输入信号频率 100 kHz, 幅度 0.1 Vpp 时, 每路差分输出信号频率为 100 kHz, 幅度为 1 Vpp, 符合设计指标要求.

3.2.2 电路滤波性能仿真

仿真波形由 4 个不同频率信号混合组成, 仿真条件设置如表 5 所示. 其中, 100 kHz 信号为所需输出信号, 其他 3 种信号为模拟带外噪声.

表 5 仿真条件设置

编号	频率/kHz	幅度/ Vpp
1	20	0.1
2	100	0.1
3	300	0.1
4	1 024	0.1

将混合信号输入滤波电路,输入信号波形如图 14 中红色曲线所示,输出差分信号波形如图 14 中黄色 和绿色曲线所示.由仿真结果可知,在滤波前,100 kHz 的原始信号完全淹没在带外噪声中,通过滤波电路 后,可以从中还原出原始的 100 kHz 信号.

图 14 输出信号结果仿真图

3.2.3 电路综合性能仿真

利用 MATLAB 生成仿真的罗兰-C 信号, 封装成标准格式后通过 Multisim 中的任意波发生器模块 Labview LVM 调用. 图 15 为通过任意波发生器生成的模拟罗兰-C 信号.

图 15 模拟罗兰-C 信号仿真图

在上述原始罗兰-C 信号中加入噪声. 仿真信号 参数设置如表 6 所示, 其中罗兰-C 信号中心频点 100 kHz, 在其中分别加入低频段 20 kHz、中频段 300 kHz、高频段 1 MHz 三种不同中心频点的连续波 干扰带外噪声, 以模拟罗兰-C 信号在实际环境中可 能面临的不同频率干扰.

编号	频率	幅度/ Vpp
1	罗兰-C信号	0.1
2	20 kHz干扰	0.1
3	300 kHz干扰	0.1
4	1 MHz干扰	0.1

表 6 仿真信号设置

图 17 滤波后输出信号图

图 18 滤波后输出信号局部放大图

由图 17~18 可见,通过天线前端电路的处理,可 以从噪声中还原出标准的罗兰-C 信号并放大以供接 收机采样处理使用.

3.3 实测结果

根据设计方案,对罗兰-C天线样机进行了制作. 在福建沿海某地对实际罗兰-C信号进行了接收,接 收到的某一组罗兰-C脉冲信号波形及其中单个罗兰-C脉冲信号波形如图 19~20 所示.

由图 19~20 可知,制作的天线可以较好地接收自然环境中罗兰-C 信号,采集到信号的信噪比较好.

加入噪声后的罗兰-C 信号如图 16 所示,可见信 号完全淹没在噪声中.

图 16 加入噪声后的罗兰-C 信号仿真图

将混杂噪声的信号输入设计的天线前端电路,得 到输出信号及其局部放大图如图 17~18 所示.

4 结束语

本文提出了一种罗兰-C 磁天线的设计方法,介 绍了磁棒天线的参数选择和设计方式,设计了天线的 小型一体化结构,对天线前端电路中的放大电路、滤 波电路和供电电路进行了详细设计,并对所涉及的磁 天线性能及前端电路性能进行了仿真.结果表明:本 文设计的磁天线能够很好地满足罗兰-C 信号的接收 作用,可以从混杂了噪声的信号中还原提取并放大罗 兰-C 信号并进行差分输出,供罗兰-C 接收机使用,对 罗兰-C 小型有源接收天线的设计和工程化应用有一 定的借鉴意义.

参考文献

- [1] VOLPE J A. Vulnerability assessment of the transportation infrastructure relying on the Global Positioning System [R/OL]. [2022-07-21]. International workshop on algorithms forwireless mobile ad hoc & sensor networks, 2001. https:// www.flyron.com/downloads/GPSVulnerabilityAssessment.pdf
- [2] BUTTERLINE E, FRODGE S L. GPS: synchronizing our telecommunications networks[C]//The 12th International Technical Meeting of the satellite Division of the Institute of navigation, 1999: 597-605.
- [3] MEDINA D, LASS C, MARCOS E P, et al. On GNSS jamming threat from the maritime navigation perspective[C]// The 22th International Conference on Information Fusion (FUSION), 2019: 1-7. DOI: 10.23919/FUSION43075.2019. 9011348
- [4] LINN R G. The case for loran[J/OL]. [2022-07-21]. Journal of air traffic control, 1999, 41(3): 24-28. https://trid.trb.org/ view/615104
- [5] OFFERMANS G W A, HELWIG A W S, VAN WILLIGEN

D. Eurofix system and its developments[J]. The journal of navigation, 1999, 52(2): 163-175. DOI: 10.1017/S037346 3399008231

- [6] OFFERMANS G W A, HELWIG A W S, VAN WILLIGEN D. Eurofix: test results of a cost- effective DGNSS augmentations system [C]//International Conference of the Royal Institute of Navigation, 1996. DOI: 10.1017/S037346 330002381X
- [7] VAN WILLIGEN D, OFFERMANS G W A, HELWIG A W S, et al. Eurofix: status, performance and possible interoperability with GNSS, WAAS & EGNOS[C]// The 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), 2001: 2398-2405.
- [8] OFFERMANS G W A, HELWIG A W S, VAN ESSEN R F, et al. Integration aspects of DGNSS and Loran-C for land applications [C]// The 53rd Annual Meeting of The Institute of Navigation (1997), 1997: 523-531.
- [9] 高久翔, 原艳宁, 师振盛, 等. 高性能罗兰-C接收天线设计 [J]. 电子技术应用, 2022, 48(4): 132-136.
- [10] 武鹏宽,徐良,张辉.一种罗兰C磁天线的设计[C]//全国天 线年会,2017:1415-1417.
- [11] 崔国恒,曹可劲,许江宁,等.基于罗兰C的全向磁天线技术研究[J].计算机测量与控制,2010,18(12):2821-2832.
- [12] 曾鹏, 胡东亮. 罗兰C磁天线的设计与性能研究[J]. 弹箭与 制导学报, 2009, 29(6): 249-252.
- [13] 刘卿. 电小天线在甚低频接收系统中的应用研究[D]. 武汉: 武汉大学, 2018.
- [14] 张绪德. 罗兰 C 小型化有源接收天线的研究[D]. 成都: 电 子科技大学, 2018.
- [15] 葛志斌. 罗兰-C磁天线设计与研究[D]. 西安: 西安理工大 学, 2021.
- [16] 杜树春.集成运算放大器应用经典实例[M].北京:电子工业出版社,2015.

作者简介

刘杨 (1990—),男,硕士,工程师,研究方向为无 线电导航.

齐俊东 (1974—), 男, 研究方向为卫星导航通信 等产品的研制、生产的质量监督和检测.

陈奇东 (1980—), 男, 博士, 高级工程师, 研究方 向为电波环境监测和无线电导航等.

黄晓 (1992—), 男, 硕士, 工程师, 研究方向为数 字信号处理.

徐文璞 (1992—), 男, 硕士, 工程师, 研究方向为 数字信号处理.

刘睿 (1989—), 男, 硕士, 高级工程师, 研究方向 为电波环境监测和无线电导航等.

The design and simulation of a small active Loran-C receiving antenna

LIU Yang¹, QI Jundong², CHEN Qidong¹, HUANG Xiao¹, XU Wenpu¹, LIU Rui¹

 (1. The China Research Institute of Radio-wave Propagation, Qingdao 266107, China;
 2. Military Representative Office of military representative Bureau of equipment development department of Central Military Commission in Zhengzhou, Zhengzhou 450000, China)

Abstract: Aiming at the needs of Loran-C to receive radio navigation signals, a high-performance Loran-C small active receiving antenna is studied, which can greatly facilitate the use of Loran-C navigation receivers. It is of high practical significance to reduce the volume of the antenna to reduce the difficulty of installation. The main body of the antenna adopts a magnetic rod coil antenna to receive the Loran-C signal in the long-wave band. The front-end signal conditioning circuit including amplifier circuit, band-pass filter circuit, differential output circuit and power supply circuit is designed to increase signal sensitivity and signal-to-noise ratio; an integrated antenna structure is designed for engineering application. Simulations show that the antenna can efficiently receive Loran-C signals. It can amplify the weak Loran-C signal and filter out out-of-band noise, and the signal strength and signal-to-noise ratio meet the requirements. The antenna has the characteristics of small size, high sensitivity and convenient use, and can be used in Loran-C radio navigation, combined Navigation, additional secondary phase delay calculation and other scenarios.

Keywords: Loran-C; active receiving antenna; magnetic antenna; differential amplifier circuit; filter circuit