

中国科学引文数据库(CSCD)
 中文科技期刊数据库
 中国核心期刊(遴选)数据库
 日本科学技术振兴机构数据库(JST)

・中国学术期刊(网络版)(CNKI) ・中国学术期刊综合评价数据库(CAJCED) ・中国提星期刊城出版平台

北斗二号/三号融合载波相位时间传递精度分析

于合理,李明磊,马国元,叶子玉

Performance analysis of BDS-2/BDS-3 carrier phase time transfer

YU Heli, LI Minglei, MA Guoyuan, and YE Ziyu

引用本文:

于合理, 李明磊, 马国元, 等. 北斗二号/三号融合载波相位时间传递精度分析[J]. 全球定位系统, 2022, 47(4): 46-49. DOI: 10.12265/j.gnss.2022007 YU Heli, LI Minglei, MA Guoyuan, et al. Performance analysis of BDS-2/BDS-3 carrier phase time transfer[J]. Gnss World of China, 2022, 47(4):

YU Heli, LI Minglei, MA Guoyuan, et al. Performance analysis of BDS–2/BDS–3 carrier phase time transfer[J]. Gnss World of China, 2022, 4/(4): 46–49. DOI: 10.12265/j.gnss.2022007

在线阅读 View online: https://doi.org/10.12265/j.gnss.2022007

您可能感兴趣的其他文章

Articles you may be interested in

北斗卫星导航系统动态定位精度测试与分析

Dynamic Positioning Accuracy Test and Analysis of BeiDou Satellite Navigation System 全球定位系统. 2018, 43(1): 43-48

北斗三号短基线相对定位精度分析

Analysis of relative positioning accuracy of BDS-3 short baseline 全球定位系统. 2020, 45(1): 61-65

北斗三号系统标准单点定位精度分析

Accuracy analysis of standard single point positioning of BDS-3 全球定位系统. 2019, 44(4): 113-118

北斗卫星导航系统在人工鱼礁中应用的探索

Explore BeiDou Satellite Navigation System in the Application of Artificial Reefs 全球定位系统. 2017, 42(2): 106–109

基于北斗卫星导航系统的物流动态追溯系统设计与应用

Design and Implementation of Logistics Dynamic Traceability System Based on BeiDou Satellite Navigation System 全球定位系统. 2017, 42(3): 82–86

GEO卫星对BDS-3伪距单点定位性能定量提升分析

GEO satellite's quantitative improvement analysis of BDS-3 pseudorange single point positioning performance 全球定位系统. 2020, 45(5): 62-66

关注微信公众号,获得更多资讯信息

DOI: 10.12265/j.gnss.2022007

北斗二号/三号融合载波相位时间传递精度分析

于合理,李明磊,马国元,叶子玉

(电子信息系统复杂电磁环境效应国家重点实验室,河南洛阳471003)

摘 要:本文给出了载波相位时间传递数学模型,并基于多模全球卫星导航系统(GNSS)试验跟踪网 MGEX (Multi-GNSS Experiment)的实测数据,对北斗二号/北斗三号卫星导航系统(BDS-2/BDS-3)融合载波相位时间传递性能进行分析.结果表明:BDS-3的加入能够增加测站的可视卫星数量,改善卫星分布空间构型.相比仅使用BDS-2,BDS-2/BDS-3 融合解算可将 MRO1-CUSV 和 NNOR-CUSV 的时间传递精度分别从 0.11 ns、0.10 ns 提高到 0.07 ns、0.08 ns, A 类不确定度分别从 0.007 ns、0.006 ns 提高到 0.004 ns、0.005 ns.

关键词:北斗卫星导航系统 (BDS);全球卫星导航系统 (GNSS);载波相位;时间传递;精度
中图分类号:P228.4 文献标志码: A 文章编号:1008-9268(2022)04-0046-04

0 引 言

精密时间在国民经济建设等各项领域都起着重 要的作用,已经成为国家重要的战略资源[1-3].精密时 间具有十分重要的军事意义, 2017年美国空军战略 和技术中心提出"授时战"的概念,时间的军事价值已 经受到了世界各国军队的肯定和认可,并将在未来战 争中发挥重要的作用,而高精度的时间传递技术是实 现高精度时间系统的关键,没有高精度的时间传递就 不可能使不同地方的时钟保持高精度的时间同步.全 球卫星导航系统 (GNSS) 载波相位时间传递具有高 精度、低成本、全球覆盖、全天候的特点,已经成为标 准时间信号传递的主要技术手段之一. 自 1990 年瑞 士学者 Schildknecht 等提出利用 GPS 进行时间传递 的设想以来, 文献 [3-7] 对 GPS、GLONASS 载波相位 时间传递算法进行了大量的研究.但 GPS、GLONASS 分别受美国国防部和俄罗斯国防部控制,其可在必要 的时候伪造甚至局部停发信号,因此研究我国独立自 主的北斗卫星导航系统 (BDS) 时间传递技术具有极 其重要的意义。2020年7月31,北斗三号卫星导航系 统 (BDS-3)建成并宣布开通服务,标志着我国北斗 "三步走"发展战略圆满完成,北斗迈向全球服务新时 代,我国成为世界上第三个独立拥有 GNSS 的国家^[8-9]. BDS-3 提供兼容北斗二号卫星导航系统 (BDS-2) 信 号和新体制信号的多频导航信号,具备向全球提供导

收稿日期:2022-01-11 通信作者:于合理 E-mail: yuhl1989@163.com 航、定位和授时 (PNT) 等多种服务能力.目前针对 BDS 时间传递的研究主要集中在单向、双向时间传 递和共视、全视时间传递^[2,10-12],但针对 BDS-2/BDS-3 融合载波相位时间传递的研究还比较少,因此有必要 对 BDS-2/BDS-3 融合载波相位时间传递性能进行 研究.

1 时间传递基本原理

GNSS 载波相位时间传递一般采用精密单点定位 (PPP) 算法. PPP 算法通常采用消电离层组合,北斗载波相位时间传递消电离层组合观测方程如下^[3,13-14]:

$$\Phi^{j} = \rho^{j} - c \cdot \delta t + c \cdot \delta t^{j} + \lambda \cdot N^{j} + T^{j} + d_{hd(\Phi)} - d^{j}_{hd(\Phi)} + \varepsilon^{j}_{\Phi},$$
(1)

$$B^{j} = \rho^{j} - c \cdot \delta t + c \cdot \delta t^{j} + T^{j} + d_{hd(P)} - d^{j}_{hd(P)} + \varepsilon^{j}_{P}.$$
 (2)

式中: j为卫星号; ϕ 、B为载波相位和伪距消电离层 组合观测量; ρ 为星地距离; δt 、 δt^{j} 分别为接收机钟 和卫星钟相对于参考时间的相对钟差; c为光速; λ 、 N分别为消电离层组合载波长和模糊度; T为对流层 延迟; $d_{hd(\phi)}$ 、 $d_{hd(P)}$ 分别为接收机端载波、伪距硬件延 迟; $d_{hd(\phi)}^{j}$ 、 $d_{hd(P)}^{j}$ 分别为卫星端载波、伪距硬件延迟; ε_{ϕ}^{j} 、 ε_{ρ}^{j} 分别为载波和伪距测量噪声.

卫星轨道和钟差可采用国际 GNSS 服务 (IGS) 组织分析中心发布的事后精密产品,观测方程中未知

参数为接收机三维坐标、钟差、消电离层组合模糊度 和天顶对流层延迟.将观测方程线性化后可写成向量 形式

$$V = AX - L, P. \tag{3}$$

式中: **X**为待估参数,包括接收机坐标、钟差、模糊度 及对流层天顶延迟; **V**为观测值残差; **A**为设计矩阵; **L**为观测值向量; **P**为观测值权矩阵.

进行参数估计可得测站相对于参考时间北斗时 (BDST)的相对钟差 δt . 设参考时间为 t_{REFT} , 测站 r_1 、 r_2 的真实时间分别为 t_r 、 t_r .则测站 r_1 和 r_2 的相对钟差 δt_r 、 δt_r 满足:

$$\delta t_{r_1} = t_{r_1} - t_{\text{REFT}},\tag{4}$$

$$\delta t_{r_2} = t_{r_2} - t_{\text{REFT}}.$$
(5)

则测站
$$r_1$$
和 r_2 的站间时间传递结果 $\delta t_{r_1-r_2}$ 为

$$\delta t_{r_1 - r_2} = t_{r_1} - t_{r_2}. \tag{6}$$

将式 (4)~(5) 带入式 (6) 可得两测站的站间时间 传递结果

$$\delta t_{r_1-r_2} = \delta t_{r_1} - \delta t_{r_2}.\tag{7}$$

2 试验分析

选取 2020 年 10 月 22 日泰国曼谷帕图万 (CUSV)、 澳大利亚布尔迪市 (MRO1) 和新诺尔恰 (NNOR) 三 个测站进行时间传递性能精度分析,采用2种方案进 行解算. 方案1 仅采用 BDS-2, 方案 2 采用 BDS-2/ BDS-3 融合数据处理的策略, 试验中采用 B1 和 B3 频点观测数据进行消电离层组合,观测数据采样间隔 为 30 s, 卫星高度截止角设为 10°, 卫星轨道和钟差 采用德国地学研究中心 (GFZ) 提供的精密轨道和精 密钟差产品.实验采用静态模式进行处理,随机模型 采用基于高度角的随机模型决定观测噪声水平,地球 自转、相对论效应、天线相位缠绕、固体潮等采用相 应的模型进行改正,模糊度参数采用浮点解,实验中 未对接收机硬件延迟偏差进行改正.由于 GFZ 提供 的事后精密钟差产品的采样间隔为5min,本文以 5 min 为采样间隔对方案 1 和方案 2 的时间传递精度 进行分析.

2.1 可见卫星数和精度衰减因子分析

以测站 CUSV 为例,图 1~2 分别给出了卫星高 度截止角为 10°时 2 种方案下可视卫星数量和几何 精度衰减因子 (PDOP).由图 1~2 可知,仅 BDS-2 时, 可视卫星数为 8~13 颗, PDOP 值波动较大,在 1.52~ 2.99 变化; BDS-2/BDS-3 融合解算时,可视卫星数为 17~25颗, PDOP 值在 0.92~1.78 变化. BDS-3 的加入 能够增加测站的可视卫星数量,改善卫星分布空间构 型,可将测站 CUSV 的平均可视卫星由 11 颗增加到 22颗,平均 PDOP 值从 1.94 降低至 1.15.

2.2 时间传递结果分析

采用卡尔曼滤波(KF)分别解算测站CUSV、MRO1 和NNOR的钟差结果,并将单站钟差结果进行做差 可得站间时间传递结果,图 3~4 给出了MRO1-CUSV 和NNOR-CUSV的站间时间传递结果.

由图 3~4 可知, 2 种方案解算得到的时间传递结 果变化趋势基本一致, 但解算结果与 GFZ 结果存在 系统性偏差, 这主要是因为解算时未对接收机的硬件 延迟偏差进行改正, 同时采用不同数据处理方法也会 使结果存在一定的系统性偏差. 将 2 种方案时间传递 结果与 GFZ 最终结果作差可计算得到站间时间传递 结果的差值序列, 为更好地分析时间传递结果, 图 5~ 6 给出了消除系统性偏差后 MRO1-CUSV 和 NNOR-CUSV 的时间传递结果差值序列. 表 1 给出了 MRO1-CUSV 和 NNOR-CUSV 站间时间传递结果的标准 差, 表 2 给出了 MRO1-CUSV 和 NNOR-CUSV 站间 时间传递结果的 A 类不确定度.

图 6 NNOR-CUSV 时间传递结果的差值序列

表1 两种方案结果的标准差			ns
方案	MRO1-CUSV	NNOR-CUSV	
方案1	0.11	0.10	
方案2	0.07	0.08	
表 2 两种方案结果的 A 类不确定度 ns			

方案	MRO1-CUSV	NNOR-CUSV
方案1	0.007	0.006
方案2	0.004	0.005

由图 5~6、表 1~2 可知, 2 种方案计算的时间传 递结果变化趋势基本一致, BDS-2/BDS-3 融合解算 时间传递结果优于单 BDS-2 解算的时间传递结果. 方案 2 相比方案 1 能够将 MRO1-CUSV 和 NNOR-CUSV 时间传递精度分别从 0.11 ns、0.10 ns 提高到 0.07 ns、0.08 ns, 精度分别提高 36% 和 20%. BDS-2/ BDS-3 融合时间传递能够将 MRO1-CUSV 和 NNOR-CUSV A 类不确定度分别从 0.007 ns、0.006 ns 提高 到 0.004 ns、0.005 ns, 精度分别提高 42% 和 17%.

3 结束语

随着 BDS-3 建成并宣布开通服务,有必要对 BDS-2/BDS-3 融合载波相位时间传递精度进行分析. 文中给出了载波相位时间传递基本模型,并利用 GFZ 发布的卫星精密产品和测站 CUSV、MRO1、 NNOR 的观测数据,通过具体试验分析了 BDS-2/ BDS-3 融合时间传递性能.结果表明: BDS-3 的加入 能够增加测站的可视卫星数量,改善卫星分布空间构 型,可将测站 CUSV 的平均可视卫星由 11 颗增加到 22 颗,平均 PDOP 值从 1.88 降低至 1.15. BDS-2/BDS-3 融合解算时间传递结果优于仅利用 BDS-2 的时间传 递结果.可将 MRO1-CUSV 和 NNOR-CUSV 的时间 传递精度分别从 0.11 ns、0.10 ns 提高到 0.07 ns、0.08 ns, A 类不确定度分别从 0.007 ns、0.006 ns 提高到 0.004 ns、 0.005 ns.

参考文献

- [1] 王义遒. 原子钟与时间频率系统[M]. 北京: 国防工业出版 社, 2012.
- [2] 吴海涛, 李变, 武建锋. 北斗授时技术及其应用[M]. 北京: 电子工业出版社, 2016.
- [3] 于合理, 郝金明, 郭福生, 等. 遮挡环境下BDS/GPS等权组 合载波相位时间传递方法[J]. 测绘学报, 2018, 47(S0): 109-116.

- [4] GE Y L, QIN W J, SU K, et al. A new approach to real-time precise point-positioning timing with international GNSS service real-time service products[J]. Measurement science and technology, 2019, 30(12): 125104. DOI: 10.1088/1361-6501/ab2fa5
- PETIT G, KANJ A, LOYER S, et al. 1×10⁻¹⁶ Frequency transfer by GPS PPP with integer ambiguity resolution[J]. Metrologia, 2015, 52(2): 301-309. DOI: 10.1088/0026-1394/ 52/2/301
- [6] LAHAYE F, COLLINS P, CERRETTO G, et al. Advances in time and frequency transfer from dual-frequency GPS pseudorange and carrier-phase observations[C]//The 40th Annual Precise Time and Time Interval (PTTI) Meeting, 2008: 415-432.
- [7] JIANG Z, LEWANDOWSKI W. Accurate GLONASS time transfer for the generation of the coordinated universal time[J]. International journal of navigation and observation, 2012: 1687-5990. DOI: 10.1155/2012/353961
- [8] 陈俊平,于超,周建华,等.北斗二号/三号融合的分米级星 基增强算法与性能分析[J].中国科学:物理学力学天文学, 2021,51(1):59-67.
- [9] 蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统 服务性能评估: 定位导航授时、星基增强、精密单点定位、

短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435.

- [10] 杨帆. 基于GEO和IGSO卫星的高精度共视时间传递[D]. 北京: 中国科学院大学, 2013.
- [11] 王天. 北斗卫星导航系统授时性能评估研究[D]. 西安:长 安大学, 2014.
- [12] WANG L, LI Z S, GE M R, et al. Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service[J]. GPS solutions, 2019, 23(3): 66. DOI: 10.1007/s10291-019-0856-9
- [13] 吕大千. 基于精密单点定位的 GNSS 时间同步方法研究[D]. 长沙: 国防科技大学, 2020.
- [14] 葛玉龙. 多频多系统精密单点定位时间传递方法研究[D]. 北京: 中国科学院大学, 2020.

作者简介

于合理 (1989—), 男, 博士, 工程师, 研究方向为 导航时频、导航对抗.

李明磊 (1989—), 男, 博士, 工程师, 研究方向为 测绘导航.

马国元 (1973—), 男, 硕士, 高级工程师, 研究方 向为测绘导航.

叶子玉 (1994—), 女, 助理工程师, 研究方向为 测绘导航.

Performance analysis of BDS-2/BDS-3 carrier phase time transfer

YU Heli, LI Minglei, MA Guoyuan, YE Ziyu

(State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China)

Abstract: The mathematical model of carrier phase time transfer is given, and the performance of BeiDou-2/BeiDou-3 Navigation Satellite System (BDS-2/BDS-3) combined carrier phase time transfer is analyzed based on the measured data of the multi-GNSS experiment (MGEX). The results show that the addition of BDS-3 can increase the number of visible satellites and improve the spatial configuration of satellite distribution. Compared with only using the BDS-2 system, the time transfer accuracy of MRO1-CUSV and NNOR-CUSV can be improved from 0.11 ns and 0.10 ns to 0.07 ns and 0.08 ns, and the A-class uncertainty can be improved from 0.007 ns and 0.006 ns to 0.004 ns and 0.005 ns, respectively, in the BDS-2/BDS-3 combination scenario.

Keywords: BeiDou Navigation Satellite System (BDS); Global Navigation Satellite System (GNSS); carrier phase; time transfer; accuracy