DOI: 10.12265/j.gnss.2020090802

基于北斗三号的大气水汽探测性能初步分析

郭秋英,侯建辉,刘传友,徐铭泽,孙英君

(山东建筑大学 测绘地理信息学院,济南 250102)

摘 要: 对我国刚布署完成的北斗三号卫星导航系统(BDS-3)的大气水汽探测性能作 初步分析可更好地发挥 BDS-3 的气象探测潜能.采用全球不同位置的台站进行几种手段的对 比,探测结果具有代表性和说服力.研究结果表明:将 BDS-3/PWV(大气可降水量)与 GPS/PWV 对比,平均偏差(BIAS)优于 1.0 mm,均方根误差(RMSE)优于 2.0 mm,相关系数均在 94% 以上; BDS-3/PWV与 GPS/PWV 求差取绝对值后的平均值(MEAN)为 1.1 mm,比北斗二号(BDS-2) 降低了 71%; BDS-3/PWV与 GPS/PWV 的 RMSE 为 1.4 mm,比 BDS-2 降低了 63%.将 BDS-3/PWV与 ERA5/PWV 对比, BIAS 优于 2.9 mm, RMSE 优于 2.8 mm,相关系数均在 92% 以上, BDS-3/PWV与 ERA5/PWV 的 MEAN为 2.1 mm,比 BDS-2 降低了 48%; BDS-3/PWV与 ERA5/PWV 的 RMSE 为 1.6 mm,比 BDS-2 降低了 57%. BDS-3 探测水汽性能明显优于 BDS-2; BDS-3 水汽探测结果与 GPS、ERA5 再分析资料有很好的一致性.

关键词:北斗三号(BDS-3);GPS;ERA5;大气可降水量(PWV);水汽探测 中图分类号:P228;P412 文献标志码:A 文章编号:1008-9268(2021)01-0089-09

0 引 言

水汽是大气中的水蒸气,它是大气中活跃多 变的成分,含量很少,分布极不均匀,时空变化很 大.水汽影响着能量输送、辐射平衡、云的形成和 降水,它潜能的释放对大气的垂直稳定度、恶劣 天气的形成有显著的影响^[1].水汽随时空变化对 气象预报有重要的指示意义,特别是对水平范围 100 km 左右、生命周期只有几个小时的中小尺度 灾害性天气的监视和预报尤为重要.因此,有效 地获取高精度、高时空分辨率、全天时的大气水 汽信息对于中小尺度灾害性天气的预报和防灾减 灾具有重要作用^[2].

自 GPS 气象学技术首次发布^[3] 以来, GPS 已 发展成为研究大气可降水量(PWV)的有力工具. 许多研究表明,由 GPS 技术得到的 *PWV* 可以达 到 1~3 mm 甚至更高的精度^[4-7]. 全球卫星导航系 统 (GNSS) 是 20 世纪对人类生活具有广泛重大影 响的空间技术之一,目前已被广泛应用于大气、 海洋、空间探测等领域,且对这些领域产生了深刻影响^[8]. GNSS 探测水汽技术具有实时连续性、 不受天气影响、价格经济和精度高等特点,为水 汽探测提供了一种新的手段,是常规水汽探测手 段的有力补充^[9-10].

我国自主建设的北斗卫星导航系统(BDS) 是继美国的 GPS、俄罗斯的 GLONASS 和欧洲的 Galileo 之后的第四个卫星导航系统,整个系统 在 2020 年形成全球覆盖能力.众多学者对 BDS 的 系统性能、观测质量、模型精度等进行了分析 评估^[11-16].

至今,北斗三号 (BDS-3) 星座部署已经完成. 基于 BDS-3 卫星探测 PWV 的精度对 BDS 应用于 全球水汽探测至关重要.本文基于 MGEX(Multi-GNSS Experiment)观测数据,给出了 BDS-3 水汽 探测性能的初步分析结果.

1 地基 GNSS 大气水汽探测原理

从卫星到地面接收机的 GNSS 信号在穿过电

收稿日期:2020-09-08

资助项目:山东省自然科学基金(ZR2017MD029);山东省住房城乡建设科技项目(2017-R1-004);山东省研究生教育优质 课程建设项目(SDYKC18080)

通信作者:侯建辉 E-mail: jhuihou@163.com

离层和中性大气层时会发生延迟.电离层为色散 特质,通过组合不同频率的观测值可以得到很好 的消除.大多数中性大气层延迟是由对流层引起 的,因此中性大气延迟层又称为对流层延迟.

1.1 天顶总延迟

对流层延迟信息是 GNSS 气象学中的主要研究对象.在 GNSS 数据处理中,为了避免秩亏问题,通常将沿信号斜路径的对流层延迟映射到天顶方向^[17],即天顶总延迟 (ZTD). ZTD 包含两部分:第一部分是由干燥空气所引起的延迟,称为天顶静力学延迟 (ZHD);另外一部分是由大气中的水汽所引起的延迟,称为天顶湿延迟 (ZWD). 三者的数学关系表达为

$$ZTD = ZHD + ZWD. \tag{1}$$

1.2 ZHD 和 ZWD 的计算

*ZHD*可以由经验模型 Saastamonien模型^[18]、 Hopfield模型^[19]准确估算.本文使用 Saastamonien 模型对 *ZHD*进行计算,数学模型可表示为

$$\begin{cases} ZHD = \left[(2.277\ 9 \pm 0.002\ 4)\ \mathrm{m} \cdot \mathrm{hPa}^{-1} \right] \times \frac{p_{\mathrm{s}}}{f(\theta, H)} \\ f(\theta, H) = 1 - 0.002\ 66 \cdot \cos(2\theta) - 0.000\ 28 \cdot H \end{cases}$$
(2)

式中: P_s 为测站地面气压, hPa; H为测站高程, km; θ 为测站地理纬度.

ZWD 主要是由大气中的水汽引起, 很难对其

进行准确建模.在GNSS 气象学中,通常从估算的 ZTD 中减去 ZHD 来获取 ZWD,如下所示:

$$ZWD = ZTD - ZHD. \tag{3}$$

1.3 PWV的计算

计算得到的 ZWD 可由水汽转换系数转换为 PWV, 如下式所示:

$$PWV = \Pi \cdot ZWD. \tag{4}$$

式中, ∏为水汽转换系数, 由下式计算:

$$\Pi = \frac{10^6}{\rho_{\rm w} R_{\rm v} (k_2 + k_3/T_{\rm m})}.$$
(5)

式中: T_m 为加权平均温度; ρ_w 是液态水密度; R_v 是 水汽的比气体常数; k_2 、 k_3 是大气折射率实验常 数,分别为16.52 K/hPa、3.776×105 K²/hPa.

2 实验数据及处理策略

2.1 数据来源

本文采用 MGEX 发布的 CEBR、CUSV、GANP、 IISC、KIR8、MAR7、MAS1、TONG、VILL、YEL2 10个台站的观测数据,统计分析的时间段为 2020年年积日 015—029.图1给出了选用的10 个 MGEX 站的位置分布图.各站在同一时刻北斗 二号 (BDS-2)、BDS-3 至少可视卫星数及观测值类 型情况如可视卫星数及观测值类型情况如表1 所示.

图 1 实验选用的 10 个 MGEX 站位置分布图

MGEX站	观测值类型	同一时刻BDS-2、BDS-3至少可视卫星数
CEBR	C1P L1P C5P L5P C2I L2I C7I L7I C6I L6I	5、6
CUSV	C2I L2I C6I L6I C7I L7I	13、7
GANP	C5X L5X C2I C7I L2I L7I L6I C6I	8、8
IISC	C2I L2I C6I L6I C7I L7I	11,5
KIR8	C5X L5X C2I C7I L2I L7I L6I C6I	9、10
MAR7	C5X L5X C2I C7I L2I L7I L6I C6I	6、8
MAS1	C1P L1P C5P L5P C2I L2I C7I L7I C6I L6I	4、6
TONG	C21 L2I C6I L6I C7I L7I	5、7
VILL	C1P L1P C5P L5P C2I L2I C7I L7I C6I L6I	6、6
YEL2	C2I L2I C6I L6I C7I L7I	4、8

表1 MGEX 站相关信息

2.2 数据处理策略

利用 GAMIT V10.71 软件进行 GPS/BDS 数据 处理,采用双频消电离层组合方式,并且加以误 差修正,具体包括地球自转修正、潮汐修正、相 对论效应修正等,对流层误差模型采用估计最优 的 Saastamoninen 模型估算天顶延迟参数,并引入 全球大气映射函数模型文件 map.grid,采用分段 线性的方法估算对流层天顶延迟. GAMIT 软件解 算时采用的解算策略具体参数设置如表 2 所示. GPS 和 BDS 卫星星历采用武汉大学国际 GNSS 服 务(IGS)数据中心发布的 WUM 15 min 最终精密 星历文件(下载地址: ftp://igs.gnsswhu.cn/pub/gnss/ products/mgex/).

控制选项	控制参数
轨道处理策略	BASELINE
观测值使用	LC_AUTCLN
分析类型(迭代)	1-ITER
天顶延迟参数	25
高度截止角	10°
海潮模型	otl_FES2004.grid
对流层误差模型	Saastamoninen
映射函数模型	GMF
精密星历	WUM
其他	default

表 2 数据解算策略

2.3 ERA5 再分析资料获取

ERA5^[20] 是第五代 ECMWF 全球气候的大气

再分析资料.该资料是基于 ECMWF 综合预报系统 CY41R2 的 4D-Var 数据同化产生的,提供基本 气候变量 (ECVs)的格点气候数据记录 (CDRs),其 内容包括大气参数估计 (如不同高度上的气温、压力和可降水量)和地表参数估计 (如降水、海 冰、土壤湿度和地表温度). ERA5 大气数据详细说 明如表 3 所示.

表 3 ERA5 大气资料说明

参数	取值
数据类型	格网模型
水平覆盖率	全球
水平分辨率	0.25°×0.25°
时间覆盖率	1979—至今
时间分辨率	每小时
文件格式	GRIB/NetCDF
更新频率	每天

3 BDS-3 水汽探测分析

为了分析 BDS-3 水汽探测性能,将 BDS-2、 BDS-3分别与 GPS、ERA5 再分析资料进行对比 分析,以下分别用 BDS-2/PWV、BDS-3/PWV、GPS/ PWV、ERA5/PWV表示相应的水汽结果.

3.1 BDS-3/PWV与GPS/PWV对比分析

根据 2.2 节的数据解算策略,对所选 10 个 MGEX 站 BDS-3、BDS-2 和 GPS 的观测数据分别 进行处理,得到各站相应的 PWV,图 2(a)~图 2(j) 给出了各站 2020年年积日 015—029 共 15 d (GAMIT 软件绘制输出有连续水汽值的天数,下

在统计范围内).

015-029 共 15 d BDS-3 与 GPS 探测水汽差值的

时间序列图.表4给出了各站BDS-3/PWV与GPS/ PWV的平均偏差(BIAS)、均方根误差(RMSE)、相

关系数r的统计结果(大于2倍中误差的数据不

文同)BDS-3/PWV和GPS/PWV时间序列图.由图 2 可知,BDS-3和GPS两系统水汽探测结果具有很好的一致性.

为更好地比较 BDS-3 与 GPS 水汽探测的 结果,图 3(a)~图 3(j)给出了各站 2020 年年积日

图 2 BDS-3/PWV和 GPS/PWV时间序列

由图 3 可以看出, BDS-3 与 GPS 两系统的水 汽探测结果离散程度较小;从表 4 中可看出,各 站 BDS-3/PWV 与 GPS/PWV 的 BIAS 均优于 1.0 mm, RMSE 均优于 2.0 mm (除 TONG 站),相关系数均 在 94% 以上,总体来说, BDS-3 探测水汽性能与 GPS 保持很好的一致性. TONG 站 RMSE 偏大可能 与其所处地理环境有关,原因待查.

3.2 BDS-2/PWV与GPS/PWV对比分析

图 4(a)~图 4(j) 给出了各站 2020年年积日 015—029共15 d BDS-2/PWV 与 GPS/PWV 时间序 列图, 纵坐标表示 PWV, 单位为 mm.

由图4可知,对于非亚太地区的台站,虽在同

一时段 BDS-2 可视卫星数达到 4 颗及 4 颗以上, 但 BDS-2 探测水汽结果与 GPS 系统仍相差较大, 这与 BDS-2 是区域卫星导航系统,向亚太地区提 供服务有关.为更好地比较 BDS-2/PWV 与 GPS/ PWV,对各个站的平均偏差 BIAS、RMSE、相关系 数 r进行统计 (大于 2 倍中误差的数据不在统计 范围内),如表 5 所示.

由表 5 中可看出,对于亚太地区的 CUSV、 IISC两个站, BDS-2/PWV 与 GPS/PWV 一致性较 好, BIAS 均优于 1.4 mm, RMSE 优于 2.9 mm, 亚太 周边区域的台站相关系数均在 90% 以上;对于非 亚太区域的台站, BDS-2 水汽探测精度较差.

MGEX站	BIAS/mm	<i>RMSE</i> /mm	r/%
CEBR	-0.80	1.18	98.99
CUSV	0.10	1.93	96.49
GANP	0.11	0.73	98.87
IISC	-0.28	1.80	94.28
KIR8	-0.12	0.65	99.25
MAR7	-0.26	0.97	98.38
MAS1	-0.38	1.21	94.31
TONG	-0.79	3.69	96.90
VILL	-0.56	1.20	98.44
YEL2	0.06	0.87	95.41

表 4 BDS-3/PWV与 GPS/PWV的 BIAS、RMSE、r统计

3.3 BDS-3/PWV与 BDS-2/PWV 对比分析

为了更好地分析 BDS-3 探测水汽性能,绘制 了各站 BDS-3/PWV、BDS-2/PWV分别与 GPS/PWV 求差取绝对值后的平均值(MEAN)、RMSE分布情 况,如图 5 所示.

由图 5 可以看出, 各站 BDS-2/PWV 的 MEAN、

*RMSE*均大于 BDS-3/*PWV*,在非亚太地区的台站 尤为明显; BDS-3 的 *MEAN*、*RMSE*均优于 BDS-2, 表 6 给出了各站 BDS-3/*PWV*、BDS-2/*PWV*分别 与 GPS/*PWV*的 *MEAN*、*RMSE*统计情况,其中 ALL 表示所有 MGEX 站 BDS-3/*PWV*或 BDS-2/*PWV*与 GPS/*PWV*求差取绝对值后的平均值 *MEAN*、*RMSE*.

图 4 BDS-2/PWV与 GPS/PWV时间序列

表 5 BDS-2/PWV与 GPS/PWV的 BIAS、RMSE、r 统计			
MGEX站	<i>BIAS</i> /mm	<i>RMSE</i> /mm	r/%
CEBR	-1.65	6.17	44.42
CUSV	-0.42	2.85	92.30
GANP	0.97	2.37	88.79
IISC	1.38	2.48	90.01
KIR8	0.07	2.77	87.86
MAR7	-0.04	2.31	87.96
MAS1	0.76	3.73	57.10
TONG	4.57	7.02	15.71
VILL	2.59	6.22	54.95
YEL2	1.16	2.83	76.89

图 5 BDS-3/PWV、BDS-2/PWV分别与 GPS/PWV 求差取绝对值后的 MEAN、RMSE 分布

MOEVat	BDS-2/PWV		BDS-3/PWV	
MGEX垍	MEAN/mm	<i>RMSE</i> /mm	MEAN/mm	<i>RMSE</i> /mm
CEBR	5.31	6.17	0.96	1.18
CUSV	2.13	2.85	1.41	1.93
GANP	1.83	2.37	0.53	0.73
IISC	1.94	2.48	1.30	1.80
KIR8	2.02	2.77	0.49	0.65
MAR7	2.06	2.31	0.69	0.97
MAS1	3.14	3.73	0.92	1.21
TONG	11.84	7.02	2.78	3.69
VILL	4.78	6.22	1.00	1.20
YEL2	1.96	2.83	0.66	0.87
ALL	3.70	3.90	1.10	1.40

表 6 BDS-3/PWV、BDS-2/PWV分别与 GPS/PWV 的 MEAN和 RMSE 统计

综合图 5 和表 6 可知, BDS-3 探测水汽性 能明显优于 BDS-2; 由表 6 可知, BDS-3/PWV与 GPS/PWV的 MEAN为 1.1 mm, 比 BDS-2 降低了 71%; BDS-3/PWV与 GPS/PWV的 RMSE为 1.4 mm, 比 BDS-2 降低了 63%.

3.4 BDS-3/PWV、BDS-2/PWV与 ERA5/PWV对 比分析

为了进一步分析 BDS-3 探测水汽的性能,将 BDS-3/PWV、BDS-2/PWV与 ERA5/PWV进行了对 比,图 6 给出了各站 BDS-3/PWV、BDS-2/PWV 2020 年年积日 015—029 共 15 d分别与 ERA5/PWV 的 BIAS 时间序列.表7给出了各站 BDS-3/PWV、 BDS-2/PWV分别与 ERA5/PWV求差取绝对值后的 *MEAN、RMSE*和r的统计信息,其中 BDS-3_ALL 和 BDS-2_ALL 分别表示所有 MGEX 站 BDS-3/PWV、 BDS-2/PWV 与 ERA5/PWV求差取绝对值的 MEAN、 RMSE.

图 6 BDS-3/PWV、BDS-2/PWV与 ERA5/PWV的 BIAS 分布

由图 6 可知, BDS-3/PWV 与 ERA5/PWV 离散 程度最小, BDS-2/PWV 与 ERA5/PWV 离散程度最 大, 这与 BDS-3 卫星信号跟踪质量和观测值精度 的提高、不存在二代卫星星端多路径误差相关^[21]; 另外 BDS-3 卫星数量的增加, 改善了几何图形结 构, 提高了观测数据质量^[22]. 从表 7 可以看出, 各 站 BDS-3/PWV 与 ERA5/PWV 有很好的一致性, BIAS 优于 2.9 mm, RMSE 优于 2.8 mm, 相关系数在 92% 以上; BDS-3_ALL 的 MEAN 为 2.1 mm, 比 BDS-2 降低了 48%; BDS-3_ALL 的 RMSE 为 1.6 mm, 比 BDS-2 降低了 57%. BDS-3 水汽探测精度明显优 于 BDS-2.

MGEX站	对比方式	样本量	MEAN/mm	<i>RMSE</i> /mm	r/%
CEDD	BDS-3与ERA5	571	2.39	2.84	96
CEBR	BDS-2与ERA5	530	4.86	5.54	54
CLICK	BDS-3与ERA5	383	2.36	1.66	98
CUSV	BDS-2与ERA5	418	3.98	2.64	91
CAND	BDS-3与ERA5	550	2.93	2.64	92
GANP	BDS-2与ERA5	543	4.22	3.58	75
HEC	BDS-3与ERA5	566	1.66	1.46	94
lise	BDS-2与ERA5	297	3.47	2.00	99
V ID 0	BDS-3与ERA5	581	2.58	1.66	93
KIK8	BDS-2与ERA5	527	4.11	2.99	56
MADZ	BDS-3与ERA5	587	2.16	1.55	93
MAK/	BDS-2与ERA5	592	3.97	2.61	76
MASI	BDS-3与ERA5	574	1.45	1.39	92
MASI	BDS-2与ERA5	488	3.99	2.96	63
TONC	BDS-3与ERA5	361	2.06	1.70	97
TONG	BDS-2与ERA5	238	4.40	7.12	40
	BDS-3与ERA5	423	2.81	1.87	98
VILL	BDS-2与ERA5	458	4.58	4.90	66
VEL 2	BDS-3与ERA5	622	1.73	1.31	92
I ELZ	BDS-2与ERA5	593	3.16	1.61	63
ALL	BDS-3_ALL		2.10	1.60	
	BDS-2_ALL		4.00	3.70	

表 7]	BDS-3/PWV, BDS	-2/PWV分别与	ERA5/PWV的	MEAN,	RMSE和r统计
-------	----------------	-----------	-----------	-------	----------

4 结束语

本文选取 MGEX 发布的 10 个站 2020 年年积 日 015—029 共 15 d 的观测数据,将 BDS-2/PWV、 BDS-3/PWV分别与 GPS/PWV、ERA5/PWV 对比分 析,结果表明:

1) BDS-3/PWV 与 GPS/PWV 对比, BIAS 优于 1.0 mm, RMSE 优于 2.0 mm, 相关系数在 94% 以上. BDS-3/PWV 与 GPS/PWV MEAN 为 1.1 mm, 比 BDS-2 降低了 71%; BDS-3/PWV 与 GPS/PWV 的 RMSE 为 1.4 mm, 比 BDS-2 降低了 63%;

2) BDS-3/PWV 与 ERA5/PWV 对比, BIAS 优于 2.9 mm, RMSE 优于 2.8 mm, 相关系数均在 92%

以上.BDS-3/PWV与 ERA5/PWV MEAN为 2.1 mm, 比 BDS-2 降低了 48%; BDS-3/PWV与 ERA5/PWV 的 *RMSE*为 1.6 mm, 比 BDS-2 降低了 57%.

3) BDS-3 探测水汽性能明显优于 BDS-2; BDS-3 水汽探测结果与 GPS、ERA5 再分析资料 有很好的一致性.

参考文献

 DAI A G, WANG J H, WARE R H, et al. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity[J]. Journal of geophysical research atmospheres, 2002, 107(D10): ACL-11. DOI: 10.1029/2001JD000642.

[2] 徐祥德,陶诗言,王继志,等.青藏高原—季风水汽输送"大

三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002(3): 257-266.

- [3] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of geophysical research atmospheres, 1992, 97(D14): 15787-15807. DOI: 10.1029/92JD01517.
- [4] ROCKEN C, WARE R, VAN HOVE T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical research letters, 1993, 20(23): 2631-2634. DOI: 10.1029/93GL02935.
- [5] BRAUN O, ROCKEN C, WARE R. Validation of line-ofsight water vapor measurements with GPS[J]. Radio science, 2001, 36(3): 459-472. DOI: 10.1029/2000RS002353.
- [6] RAJA M K R V, GUTMAN S I, MCMILLIN J G, et al. The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based gps receivers over the contiguous united states[J]. Journal of atmospheric and oceanic technology, 2008, 25(3): 416-428. DOI: 10.1175/2007JTECHA889.1.
- [7] LEE S W, KOUBA J, SCHUTZ B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of geodesy, 2013, 87(10): 923-934. DOI: 10.1007/s00190-013-0655-y.
- [8] 施闯,王海深,曹云昌,等.基于北斗卫星的水汽探测性能 分析[J].武汉大学学报(信息科学版),2016,41(3):285-289.
- [9] EMARDSON T R, ELGERED G, JOHANSSON J M. Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers[J]. Journal of geophysical research, 1998, 103(D2): 1807-1820. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97J D03015.
- [10] BOCK O, FLAMANT C, RICHARD E, et al. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP[J]. Quarterly journal of the royal meteorological society, 2005, 131(612): 3013-3036. DOI: 10.1256/qj.05.27.
- [11] 高为广,苏牡丹,李军正,等.北斗卫星导航系统试运行服务性能评估[J].武汉大学学报(信息科学版), 2012, 37(11): 1352-1355.
- [12] 张强,赵齐乐,章红平,等.北斗卫星导航系统Klobucha模型
 精度评估[J]. 武汉大学学报(信息科学版), 2014, 39(2): 142 146.

- [13] 肖乐杰,孙付平,李亚萍,等. IGSO/GEO卫星对北斗系统导航性能的贡献分析[J]. 全球定位系统, 2016, 41(3): 16-20.
- [14] 马下平,鲁尚强,李秦政,等.北斗卫星导航系统的空间信号精度评估[J].测绘科学,2019,44(1):90-97.
- [15] 王敬平,姜鑫,褚少鹤,等.北斗卫星导航系统定位精度研 究[J]. 软件, 2019, 40(10): 152-154.
- [16] 魏钢,高皓,项字.北斗二号与北斗三号定位精度对比分析[J].导航定位学报,2020,8(2):8-11.
- [17] HÉROUX P, KOUBA J. GPS precise point positioning using IGS orbit products[J]. Physics and chemismistry of the earth, part A: solid earth and geodesy, 2001, 26 (6-8): 573-578.
 DOI: 10.1016/S1464-1895(01)00103-X.
- SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bullet in geodesique, 1972, 105(1): 279-298. DOI: 10.1007/BF02521844.
- HOPFIELD H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J].
 Radio science, 1971, 6(3): 357-367. DOI: 10.1029/RS006i 003p00357.
- [20] Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate[DS/OL]. [2020-06-07]. Copernicus Climate Change Service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home.
- [21] 吴仁攀,曾琪,虞顺. BDS-3数据质量评估及定位性能分析[C]//第十届中国卫星导航年会论文集-SOS空间基准与精密定位.中科北斗汇(北京)科技有限公司会议论文集, 2019:1-5.
- [22] 程军龙, 王旺, 马立烨, 等. 北斗三号观测数据质量及定位 精度初步评估[J]. 测绘通报, 2019(8): 1-7.

作者简介

郭秋英 (1970—),女,博士,教授,研究 方向为 GNSS 精密定位、GNSS 在气象监测中的 应用.

侯建辉 (1995—),男,硕士研究生,研究 方向卫星定位导航及数据处理.

刘传友 (1997—),男,硕士研究生,研究 方向为卫星定位导航及数据处理.

徐铭泽 (1997—),男,硕士研究生,研究 方向为卫星定位导航及数据处理.

孙英君 (1976—),女,博士,教授,主要从 事地理信息系统方面的教学及科研工作.

下转第111页